HEY, CHECK T OVT: @™ =11 15 | DURING A COMPETITION, T
C S 2 6 1 19.999099979. THATS WEIRD. |

YEAH, THEY DUG THROUGH

HALF THEIR ALGORITHMS
LOOKING FOR THE BUG
BEFDRE THEY FIGURED
IT OUT.

THATS
d TOLD THE PROGRAMMERS ON
YEAH. THAT'S HOW I

OUR TEAM THAT @™-1r
GOT KICKED ouT 0F | WASA STANDARD TEST OF FLOATING-
THE ACM IN COLLEGE. A POINT HANDLERS -- IT WOULD
(OME OUT T0 20 UNLESS
THEY HAD ROUNDING ERRORS.

Mike Lam, Professor % % ﬁ Ix ﬁ(i %

https://xkcd.com/217/

Floating-Point Numbers

* Topics
- Binary fractions
- Floating-point representation

— Conversions and rounding error

I Binary fractions

 Now we can store integers
- But what about general real numbers?
* Extend binary integers to store fractions

- Designate a certain number of bits for the fractional part
— These bits represent negative powers of two
— (Just like fractional digits in decimal fractions!)

101.101

1/2 1/4 1/8

4 + 1 + 05 + 0125 — 5_625 (alternatively: 5 + 5/8)

Representation Value Decimal
0.0, § 0.0,

0.01, i 0.2510
0.010, g 0.25:0
0.0011, i 0.1875,¢
0.00110, & 0.18751¢
0.001101, & 0.203125;,
0.0011010, =2 0.203125,,
0.00110011, e 0.19921875;,

I Another problem

* For scientific applications, we want to be able to
store a wide range of values

- From the scale of galaxies down to the scale of atoms
* Doing this with fixed-precision numbers is difficult

- Even signed 64-Dbit integers

* Perhaps allocate half for whole number, half for fraction
* Range: ~2 x 10-9 through ~2 x 109

I Floating-point numbers

e Scientific notation to the rescue!

- Traditionally, we write large (or small) numbers as x - 10e

— This Is how floating-point representations work

* Store exponent and fractional parts (the significand) separately
* The decimal point “floats” on the number line
* Position of point is based on the exponent

0.0123 x 102

©.123 x 16

1.23 x 10°
12.3 x 101
123.0 x 1072

I Floating-point numbers

* However, computers use binary
- So floating-point numbers use base 2 scientific notation (x - 2¢)

* Fixed width field

- Reserve one bit for the sign bit (O is positive, 1 is negative)

- Reserve n bits for biased exponent (bias is 21 - 1)
* Avoids having to use two’s complement

- Use remaining bits for normalized fraction (implicit leading 1)
* Exception: if the exponent is zero, don’t normalize

2.5 - 91000 O;LO

Sign (+) f Significand: (1).01 = 2.5

Value = (-1)° x 1.f x 2F Exponent (8 - 7 =1)

Jl Aside: Offset binary

* Alternative to two’s complement

— Actual value is stored value minus a constant K (in FP: 2n-1 - 1)
- Also called biased or excess representation
— Ordering of actual values is more natural

Example range Binary Unsigned Two’s C Offset-127
(int8_t): 0000 0000 0O 0 _127

000 000601 1 1 -126

0111 1110 126 126 -1

____________ 0111 1111 127 20 O

1000 00006 128 -128 1

1000 0001 129 -127 2

1111 1110 254 -2 127

I Floating-point numbers

1. Normalized

s # 0 and # 255 f

2. Denormalized
s{0{0{0|0|0|0|0]|0 f

3a. Infinity
s1-___1'__1'1-1 i{1{1/0|0/0|0|0|0O|0O|O(O|0O|O|O|O|O|O|0O(0O|O|O|O|0O|O]|O

Figure 2.33 Categories of single-precision floating-point values. The value of the
exponent determines whether the number is (1) normalized, (2) denormalized, or (3) a
special value.

LTSI IR I Rt B . SRR S i TSR RO DU SRR | 1. GTIESRNPINIEY D Nt DR . SSRGS i o S RNIIPRNNTORE. [UPRRE [N o SNSRI, RN, R

e NaN = “Not a Number”

- Result of 0/0 and other undefined operations

- Propagate to later calculations

- Quiet and signaling variants (QNaN and sNaN)

- Allowed a neat trick during my dissertation research:

64 32 16 8 4 1]
poubte ITTITTTITT TR (oI e) e e e e e e
downcast conversion
Revlaced 64 32 16 a 4 0
op oS [N T (T T T T e e e
3 F F 4} D E A D

Y
Non-signalling NaN

8 4 0

32 16
single W [[J[1TT1T IFEEEER (EFEEERETR

Exponent Fraction Value
Description Bit representation e E 2F f M 2ExMm V Decimal
Zero 0 0000 000 0 -6 & ¥ 3 — 0 0.0
1
Smallest positive 0 0000 001 o -6 & &+ 1 =5 13 0.001953
“denorma 1 5 2 2 1
numbers provide 0 0000 010 0 -6 7% § 8§ 3512 256 0.003906
gradua/ underflow 0 0000 011 0 —6 % % % % % 0.005859
near zero i
Largest denormalized 0 0000 111 0 -6 & I 1 — — 0.013672
Smallest normalized 0 0001 000 1 -6 & 3 3 &5 o 0.015625
0 0001 001 1 -6 & i 3 = <5 0.017578
values < 1 :
00110 110 6 -1 1 & U = N 0.875
00110 111 6 -1 3 I B - 12 0.9375
One 00111 000 7 o 1 ¢ 8 g 1 1.0
1 9 9 9
00111 001 7 i 3 3 2 2 1.125
values > 1 00111 010 7 o 1 § X L 3 1.25
01110 110 14 128 § U B2 224 2240
Largest normalized 01110 111 14 7 128 % - - 240 2400
Infinity 0 1111 000 e — — © —

Figure 2.35 Example nonnegative values for 8-bit floating-point format.

and n = 3 fraction bits. The bias is 7.

There are k = 4 exponent bits

I Floating-point numbers

—0 +0
. - - e - i - - - - \. - : - .- - e s = — - ~ A
-1 —0.8 —0.6 —0.4 —0.2 0 +0.2 +0.4 +0.6 +0.8 +1

+ Denormalized 2 Normalized & Infinity

(b) Values between —1.0 and +1.0

Figure 2.34 Representable values for 6-bit floating-point format. There are £ =3
exponent bits and n = 2 fraction bits. The bias is 3.

Not evenly spaced! (as integers are)

I Floating-point iIssues

* Rounding error is the value lost during conversion to a finite significand

- Machine epsilon gives an upper bound on the rounding error
* (Multiply by value being rounded)
— Can compound over successive operations

* Lack of associativity caused by intermediate rounding
- Prevents some compiler optimizations

* Cancelation Is the loss of significant digits during subtraction
— Can magnify error and impact later operations

double a = 100000000000000000000.0;
double b = -a; 2.491264 (7) 1.613647 (7)
double ¢ = 3.14;

printf ("Equal!\n"): 0.000012 (2) 0.000000 (0)
} else {

} printf ("Not equallin"); (5 digits cancelled) (all digits cancelled)

I Floating-point iIssues

 Some numbers cannot be represented exactly,
regardless of how many bits are used!

- E.g.,0.1,, — 0.00011001100110011001100, ...

 This is no different than in base 10
- E.g., 1/3 = 0.333333333 ...

IEEE Floating-Point Numbers

Valueis: (-1)58"x 1.frac x 2°*P

Sign (1 bit)
Fraction (23 bits)
Sign (1 bit)
oouble [[[J[L T {1 JCIACT R CETT R CET CACY e e ERT e
Exponent (11 bits) Fraction (52 bits)
Quad

Fraction (112 bits)

I Floating-point numbers

Name Bits EXp
IEEE half 16)
IEEE single 32 8
IEEE double 64 11
IEEE quad 128 15
NOTES:

- Sig is <explicit>[+<implicit>] bits
- Dec = log,o(2si9)
- M_Eps (machine epsilon) = b¢¢e-1) = b@-p)

(upper bound on relative error when rounding to 1)

Sig
10+1
23+1
52+1

112+1

Dec
3.311
7.225
15.955
34.016

M_Eps
9.77e-04
1.19e-07
2.22e-16
1.93e-34

I Conversion and rounding

-

O = overflow possible

R = rounding possible

INnt32 -
From: Int64 O - R R _ ;
“”|s safe
Float OR OR - -
Double OR OR OR -
10.00011
10.00100
10.00110
10.10100
Mode $1.40 $1.60 $1.50 $2.50 $-1.50 10.01100
Round-to-even $1 $2 $2 $2 §-2 el
Round-toward-zero $1 $1 $1 $2 $-1 Round-to-even: round to nearest,
Round-down $1 $1 $1 $2 $—2 on ties favor even numbers to
Round-up $2 $2 $2 $3 $—1 avoid statistical biases

Figure 2.37 lllustration of rounding modes for dollar rounding. The first rounds to
a nearest value, while the other three bound the result above or below.

Lol

l

—

10.
10.
10.
10.

10.
11.

00
00
01
10

10
00

I Floating-point iIssues

* Single vs. double precision choice

- Theme: system design involves tradeoffs

— Single precision arithmetic is faster
* Especially on GPUs
— Double precision Is more accurate
* More than twice as accurate!
- Which do we use?
* And how do we justify our choice?
* Does the answer change for different regions of a program?

* Does the answer change for different periods during execution?
* This is an open research question (talk to me if you're interested!)

I Manual conversions

* To fully understand how floating-point works, it helps to do
some conversions manually
— This is unfortunately a bit tedious and very error-prone
- There are some general guidelines that can help it go faster
- You will also get faster with practice

- Use the fp.c utility (posted on the resources page) to generate
practice problems and test yourself!
« Compile: gcc -0 fp fp.c
« Run: ./fp <exp_len> <sig_len>
* It will generate all postive floating-point numbers using that representation
* Choose one and convert the binary to decimal or vice versa

0 1011 000 58 normal: sign=0 e=11 bias=7

E=4 2AE=16 f=0/8 M=8/8 2AE*M=128/8 val=16.000000
0 1011 o001 59 normal: sign=0 e=11 bias=7 E=4 2AE=16 f=1/8 M=9/8 2AE*M=144/8 val=18.000000
0 1011 o010 5a normal: sign=0 e=11 bias=7 E=4 2/E=16 f=2/8 M=10/8 2/E*M=160/8 val=20.000000
E=4 2/AE=16 f=3/8 M=11/8 2AE*M=176/8 val=22.000000

0 1011 011 5b normal: sign=0 e=11 bias=7

e: The value represented by considering the exponent field to be an unsigned
integer

E: The value of the exponent after biasing

2E: The numeric weight of the exponent

f: The value of the fraction

M: The value of the significand

2F x M: The (unreduced) fractional value of the number
V: The reduced fractional value of the number

Decimal: The decimal representation of the number

If this technique works for you, great!
If not, here’s another perspective...

I Converting floating-point numbers

* Floating-point — decimal: Note:
. _ bias = 2" -1
— 1) S|gn b|t (S): (where n is the
of exp bits)

* Value is negative iff set
- 2) Exponent (exp):
* All zeroes: denormalized (E = 1-bias)

* All ones: NaN unless fis zero (which is infinity) — DONE!
* Otherwise: normalized (E = exp-bias)

- 3) Significand (f):
e If normalized: M =1+ 1f/2m (where mis the # of fraction bits)
* If denormalized: M =1/ 2m (where m is the # of fraction bits)

- 4) Value = (-1)s x M x 2t

I Converting floating-point numbers

* Decimal - floating-point (normalized only)

Note:
- 1) Convert to unsigned fractional binary format bias = 2" -1
. : (where n is the
e Set sign bit # of exp bits)

— 2) Normalize to 1.XXXXXX

» Keep track of how many places you shift left (negative for shift right)
* The “xxxxxx” bit string is the significand (pad with zeros or round if needed)
* If there aren’t enough bits to store the entire fraction, the value is rounded

- 3) Encode resulting binary/shift offset (E) using bias representation

* Add bias and convert to unsigned binary
* If the exponent cannot be represented, result is zero or infinity

Example ,—-\
(4-bit exp,

3-bit frac): 2.75 (dec) - 10.11 (bin) - 1.011 x 2* (bin) -~ 0 1000 011

Bias=21-1=7 Exp:1+7=8

I Example (textbook pg. 119)

12345,, - 11000000111001,
- 1.1000000111001, x 213
exp =13 + 127 (bias) = 140 = 10001100,

- 010001100 10000001110010000000000

(note the shared bits that appear in all three representations)

I Exercises

* What are the values of the following numbers, interpreted as
floating-point numbers with a 3-bit exponent and 2-bit
significand?

- What about a 2-bit exponent and a 3-bit significand?

001100 011001

* Convert the following values to a floating-point value with a 4-bit
exponent and a 3-bit significand. Write your answers in hex.

-3 0.125 120 00

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

