

CS 261
Fall 2017

Mike Lam, Professor

Floating-Point Numbers

https://xkcd.com/217/

Floating-point

● Topics
– Binary fractions
– Floating-point representation
– Conversions and rounding error

Binary fractions

● Now we can store integers
– But what about general real numbers?

● Extend binary integers to store fractions
– Designate a certain number of bits for the fractional part
– These bits represent negative powers of two
– (Just like fractional digits in decimal fractions!)

101.101
 4 2 1 1/2 1/4 1/8

4 + 1 + 0.5 + 0.125 = 5.625 (alternatively: 5 + 5/8)

Examples

Another problem

● For scientific applications, we want to be able to
store a wide range of values
– From the scale of galaxies down to the scale of atoms

● Doing this with fixed-precision numbers is difficult
– Even signed 64-bit integers

● Perhaps allocate half for whole number, half for fraction
● Range: ~2 x 10-9 through ~2 x 109

Floating-point numbers

 0.0123 x 102
 0.123 x 101

1.23 = 1.23 x 100
 12.3 x 10-1
 123.0 x 10-2

● Scientific notation to the rescue!
– Traditionally, we write large (or small) numbers as x ∙ 10e

– This is how floating-point representations work
● Store exponent and fractional parts (the significand) separately
● The decimal point “floats” on the number line
● Position of point is based on the exponent

Floating-point numbers

● However, computers use binary
– So floating-point numbers use base 2 scientific notation (x ∙ 2e)

● Fixed width field
– Reserve one bit for the sign bit (0 is positive, 1 is negative)
– Reserve n bits for biased exponent (bias is 2n-1 - 1)

● Avoids having to use two’s complement

– Use remaining bits for normalized fraction (implicit leading 1)
● Exception: if the exponent is zero, don’t normalize

2.5 → 0 1000 010
Sign (+)

Exponent (8 - 7 = 1)

Significand: (1).01 = 2.5

Value = (-1)s x 1.f x 2E

Aside: Offset binary

● Alternative to two’s complement
– Actual value is stored value minus a constant K (in FP: 2n-1 - 1)
– Also called biased or excess representation
– Ordering of actual values is more natural

Binary Unsigned Two’s C Offset-127

0000 0000 0 0 -127
0000 0001 1 1 -126
… … … …
0111 1110 126 126 -1
0111 1111 127 127 0
1000 0000 128 -128 1
1000 0001 129 -127 2
… … … …
1111 1110 254 -2 127
1111 1111 255 -1 128

Example range
(int8_t):

Floating-point numbers

NaNs

● NaN = “Not a Number”
– Result of 0/0 and other undefined operations
– Propagate to later calculations
– Quiet and signaling variants (qNaN and sNaN)
– Allowed a neat trick during my dissertation research:

“denormal”
numbers provide
gradual underflow
near zero

values < 1

values > 1

Floating-point numbers

Not evenly spaced! (as integers are)

Floating-point issues

● Rounding error is the value lost during conversion to a finite significand
– Machine epsilon gives an upper bound on the rounding error

● (Multiply by value being rounded)

– Can compound over successive operations

● Lack of associativity caused by intermediate rounding
– Prevents some compiler optimizations

● Cancelation is the loss of significant digits during subtraction
– Can magnify error and impact later operations

 double a = 100000000000000000000.0;
 double b = -a;
 double c = 3.14;
 if (((a + b) + c) == (a + (b + c))) {
 printf ("Equal!\n");
 } else {
 printf ("Not equal!\n");
 }

Floating-point issues

● Some numbers cannot be represented exactly,
regardless of how many bits are used!
– E.g., 0.110 → 0.000110011001100110011002 …

● This is no different than in base 10
– E.g., 1/3 = 0.333333333 ...

Floating-point numbers

Floating-point numbers

Name Bits Exp Sig Dec M_Eps

IEEE half 16 5 10+1 3.311 9.77e-04

IEEE single 32 8 23+1 7.225 1.19e-07

IEEE double 64 11 52+1 15.955 2.22e-16

IEEE quad 128 15 112+1 34.016 1.93e-34

NOTES:

 - Sig is <explicit>[+<implicit>] bits

 - Dec = log10(2Sig)

 - M_Eps (machine epsilon) = b(-(p-1)) = b(1-p)

 (upper bound on relative error when rounding to 1)

Conversion and rounding

Int32 Int64 Float Double

Int32 - - R -

Int64 O - R R

Float OR OR - -

Double OR OR OR -

To:

From:

O = overflow possible
R = rounding possible

“-” is safe

Round-to-even: round to nearest,
on ties favor even numbers to
avoid statistical biases

10.00011 → 10.00
10.00100 → 10.00
10.00110 → 10.01
10.10100 → 10.10

10.01100 → 10.10
10.11100 → 11.00

Floating-point issues

● Single vs. double precision choice
– Theme: system design involves tradeoffs
– Single precision arithmetic is faster

● Especially on GPUs

– Double precision is more accurate
● More than twice as accurate!

– Which do we use?
● And how do we justify our choice?
● Does the answer change for different regions of a program?
● Does the answer change for different periods during execution?
● This is an open research question (talk to me if you’re interested!)

Manual conversions

● To fully understand how floating-point works, it helps to do
some conversions manually
– This is unfortunately a bit tedious and very error-prone
– There are some general guidelines that can help it go faster
– You will also get faster with practice
– Use the fp.c utility (posted on the resources page) to generate

practice problems and test yourself!
● Compile: gcc -o fp fp.c
● Run: ./fp <exp_len> <sig_len>
● It will generate all postive floating-point numbers using that representation
● Choose one and convert the binary to decimal or vice versa

...
0 1011 000 58 normal: sign=0 e=11 bias=7 E=4 2^E=16 f=0/8 M=8/8 2^E*M=128/8 val=16.000000
0 1011 001 59 normal: sign=0 e=11 bias=7 E=4 2^E=16 f=1/8 M=9/8 2^E*M=144/8 val=18.000000
0 1011 010 5a normal: sign=0 e=11 bias=7 E=4 2^E=16 f=2/8 M=10/8 2^E*M=160/8 val=20.000000
0 1011 011 5b normal: sign=0 e=11 bias=7 E=4 2^E=16 f=3/8 M=11/8 2^E*M=176/8 val=22.000000
...

Textbook’s technique

If this technique works for you, great!
If not, here’s another perspective...

Converting floating-point numbers

● Floating-point → decimal:
– 1) Sign bit (s):

● Value is negative iff set

– 2) Exponent (exp):
● All zeroes: denormalized (E = 1-bias)
● All ones: NaN unless f is zero (which is infinity) – DONE!
● Otherwise: normalized (E = exp-bias)

– 3) Significand (f):
● If normalized: M = 1 + f / 2m (where m is the # of fraction bits)
● If denormalized: M = f / 2m (where m is the # of fraction bits)

– 4) Value = (-1)s x M x 2E

Note:
 bias = 2n-1 -1
(where n is the
of exp bits)

Converting floating-point numbers

● Decimal → floating-point (normalized only)
– 1) Convert to unsigned fractional binary format

● Set sign bit

– 2) Normalize to 1.xxxxxx
● Keep track of how many places you shift left (negative for shift right)
● The “xxxxxx” bit string is the significand (pad with zeros or round if needed)
● If there aren’t enough bits to store the entire fraction, the value is rounded

– 3) Encode resulting binary/shift offset (E) using bias representation
● Add bias and convert to unsigned binary
● If the exponent cannot be represented, result is zero or infinity

2.75 (dec) → 10.11 (bin) → 1.011 x 21 (bin) → 0 1000 011

Exp: 1 + 7 = 8Bias = 24-1 – 1 = 7

Note:
 bias = 2n-1 -1
(where n is the
of exp bits)

Example
(4-bit exp,
3-bit frac):

Example (textbook pg. 119)

 1234510 → 110000001110012

 → 1.10000001110012 x 213

 exp = 13 + 127 (bias) = 140 = 100011002

→ 0 10001100 10000001110010000000000

(note the shared bits that appear in all three representations)

Exercises

● What are the values of the following numbers, interpreted as
floating-point numbers with a 3-bit exponent and 2-bit
significand?
– What about a 2-bit exponent and a 3-bit significand?

● Convert the following values to a floating-point value with a 4-bit
exponent and a 3-bit significand. Write your answers in hex.

001100 011001

-3 0.125 120 ∞

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

