CS 261 Fall 2017

Mike Lam, Professor

Binary Arithmetic

Binary Arithmetic

- Topics
- Basic addition
- Overflow
- Multiplication \& Division

Basic addition

- Binary and hex addition are fundamentally the same as decimal addition
- Add digit-by-digit, using a carry as necessary
- Result generally requires more bits than the two operands

Basic addition

- Binary and hex addition are fundamentally the same as decimal addition
- Add digit-by-digit, using a carry as necessary
- Result generally requires more bits than the two operands

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.

Overflow

- Unsigned addition is subject to overflow
- Caused by truncation to integer size

(assume a 16-bit integer)

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed
modulo 16.

Overflow

- Two's complement addition is identical to unsigned mechanically
- Subject to both positive and negative overflow
- Overflows if carry-in and carry-out differ for sign bit

Figure 2.24
Relation between integer and two's-complement addition. When $x+y$ is less than -2^{w-1}, there is a negative overflow. When it is greater than or equal to 2^{w-1}, there is a positive overflow.

	0111	1111	127
	0111	1110	126
Example range	\ldots		
(int8_t):	0000	0001	1
	0000	0000	0
	1111	1111	-1
	\ldots		
	1000	0001	-127
	1000	0000	-128

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a negative overflow when $x+y<-8$ and a positive overflow when $x+y \geq 8$.

Multiplication \& Division

- Like addition, fundamentally the same as base 10
- Actually, it's even simpler!
- Same regardless of encoding
- Special case: multiply by powers of 2 (shift left)

$$
\begin{array}{lll}
2 & \ll 1=4 & (2 * 2) \\
1 & \ll 2=4 & (1 * 2 * 2) \\
& & \\
1 & \ll 4=16 & (1 * 2 * 2 * 2 * 2) \\
4 \ll 1=8 & (4 * 2) & \\
4 \ll 2=16 & (4 * 2 * 2)
\end{array}
$$

- Division is expensive!
- Special case: divide by powers of two (shift right)

Binary fractions

- Now we can store integers
- But what about general real numbers?
- Extend positional binary integers to store fractions
- Designate a certain number of bits for the fractional part
- These bits represent negative powers of two
- (Just like fractional digits in decimal fractions!)

$$
101_{1} \cdot 101
$$

$$
4+1+0.5+0.125=5.625
$$

Another problem

- For scientific applications, we want to be able to store a wide range of values
- From the scale of galaxies down to the scale of atoms
- Doing this with fixed-precision numbers is difficult
- Even signed 64-bit integers
- Perhaps allocate half for whole number, half for fraction
- Range: $\sim 2 \times 10^{-9}$ through $\sim 2 \times 10^{9}$

Floating-point numbers

- Scientific notation to the rescue!
- Traditionally, we write large (or small) numbers as $x \cdot 10 e$
- This is how floating-point representations work
- Store exponent and fractional parts (the significand) separately
- The decimal point "floats" on the number line
- Position of point is based on the exponent
- Many nuances and caveats!

$$
\begin{aligned}
& 0.0123 \times 10^{2} \\
& 0.123 \times 10^{1} \\
& 1.23= 1.23 \times 10^{0} \\
& 12.3 \times 10^{-1} \\
& 123.0 \times 10^{-2}
\end{aligned}
$$

