

CS 261
Fall 2017

Mike Lam, Professor

Binary Arithmetic

Binary Arithmetic

● Topics

– Basic addition

– Overflow

– Multiplication & Division

Basic addition

● Binary and hex addition are fundamentally the same as
decimal addition

– Add digit-by-digit, using a carry as necessary

– Result generally requires more bits than the two operands

 12540
+ 4683

 10011100
+ 1010110

 b0994f
+ 7120

Dec Bin

Hex

Basic addition

● Binary and hex addition are fundamentally the same as
decimal addition

– Add digit-by-digit, using a carry as necessary

– Result generally requires more bits than the two operands

 11
 12540
+ 4683
 17223

 111
 10011100
+ 1010110
 11110010

 1
 b0994f
+ 7120
 b10a6f

Dec Bin

Hex

Overflow

● Unsigned addition is subject to overflow

– Caused by truncation to integer size

 1
 994f
+ 7120
 10a6f = 0a6f

Truncation!

(assume a 16-bit integer)

Overflow

● Two’s complement addition is identical to unsigned mechanically

– Subject to both positive and negative overflow

– Overflows if carry-in and carry-out differ for sign bit

0111 1111 127
0111 1110 126
…
0000 0001 1
0000 0000 0
1111 1111 -1
…
1000 0001 -127
1000 0000 -128

Example range
(int8_t):

Multiplication & Division

● Like addition, fundamentally the same as base 10

– Actually, it’s even simpler!

– Same regardless of encoding

● Special case: multiply by powers of 2 (shift left)

● Division is expensive!

– Special case: divide by powers of two (shift right)

 101 (5)
x 11 (3)
 101
101
1111 (15)

2 << 1 = 4 (2 * 2)
1 << 2 = 4 (1 * 2 * 2)

1 << 4 = 16 (1 * 2 * 2 * 2 * 2)
4 << 1 = 8 (4 * 2)
4 << 2 = 16 (4 * 2 * 2)

Binary fractions

● Now we can store integers

– But what about general real numbers?

● Extend positional binary integers to store fractions

– Designate a certain number of bits for the fractional part

– These bits represent negative powers of two

– (Just like fractional digits in decimal fractions!)

101.101
 4 2 1 1/2 1/4 1/8

4 + 1 + 0.5 + 0.125 = 5.625 (alternatively: 5 + 5/8)

Another problem

● For scientific applications, we want to be able to store
a wide range of values

– From the scale of galaxies down to the scale of atoms

● Doing this with fixed-precision numbers is difficult

– Even signed 64-bit integers
● Perhaps allocate half for whole number, half for fraction
● Range: ~2 x 10-9 through ~2 x 109

Floating-point numbers

● Scientific notation to the rescue!

– Traditionally, we write large (or small) numbers as x ∙ 10e

– This is how floating-point representations work
● Store exponent and fractional parts (the significand) separately
● The decimal point “floats” on the number line
● Position of point is based on the exponent
● Many nuances and caveats!

 0.0123 x 102
 0.123 x 101

1.23 = 1.23 x 100
 12.3 x 10-1
 123.0 x 10-2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

