# CS 261 Fall 2017

Mike Lam, Professor



#### **Binary Arithmetic**

# **Binary Arithmetic**

- Topics
  - Basic addition
  - Overflow
  - Multiplication & Division

#### **Basic addition**

- Binary and hex addition are fundamentally the same as decimal addition
  - Add digit-by-digit, using a carry as necessary
  - Result generally requires more bits than the two operands



Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.

### **Basic addition**

- Binary and hex addition are fundamentally the same as decimal addition
  - Add digit-by-digit, using a carry as necessary
  - Result generally requires more bits than the two operands



Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.

### Overflow

- Unsigned addition is subject to overflow
  - Caused by truncation to integer size



(assume a 16-bit integer)



Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed modulo 16.

## Overflow

- Two's complement addition is identical to unsigned mechanically
  - Subject to both positive and negative overflow
  - Overflows if carry-in and carry-out differ for sign bit



# **Multiplication & Division**

- Like addition, fundamentally the same as base 10
  - Actually, it's even simpler!
  - Same regardless of encoding
- Special case: multiply by powers of 2 (shift left)

- Division is expensive!
  - Special case: divide by powers of two (shift right)

101 (5) x<u>11</u> (3) 101 <u>101</u> **1111** (15)

# **Binary fractions**

- Now we can store integers
  - But what about general real numbers?
- Extend positional binary integers to store fractions
  - Designate a certain number of bits for the fractional part
  - These bits represent negative powers of two
  - (Just like fractional digits in decimal fractions!)



4 + 1 + 0.5 + 0.125 = **5.625** 

# Another problem

- For scientific applications, we want to be able to store a wide *range* of values
  - From the scale of galaxies down to the scale of atoms
- Doing this with fixed-precision numbers is difficult
  - Even signed 64-bit integers
    - Perhaps allocate half for whole number, half for fraction
    - Range: ~2 x 10<sup>-9</sup> through ~2 x 10<sup>9</sup>

# **Floating-point numbers**

- Scientific notation to the rescue!
  - Traditionally, we write large (or small) numbers as  $x \cdot 10^{e}$
  - This is how floating-point representations work
    - Store exponent and fractional parts (the significand) separately
    - The decimal point "floats" on the number line
    - Position of point is based on the exponent
    - Many nuances and caveats!