CS 261 Fall 2017

Mike Lam, Professor

https://xkcd.com/571/

Integer Encodings

Integers

- Topics
- C integer data types
- Unsigned encoding
- Signed encodings
- Conversions

Integer data types in C99

C data type	Minimum	Maximum	
[signed] char	-127	127	1 byte
unsigned char	0	255	
short	$-32,767$	32,767	2 bytes
unsigned short	0	65,535	
int	$-32,767$	32,767	2 bytes
unsigned	0	65,535	
long	$-2,147,483,647$	$2,147,483,647$	4 bytes
unsigned long	0	$4,294,967,295$	
int32_t	$-2,147,483,648$	$2,147,483,647$	4 bytes
uint32_t	0	$4,294,967,295$	
int64_t	$-9,223,372,036,854,775,808$	$9,223,372,036,854,775,807$	8 bytes
uint64_t	0	$18,446,744,073,709,551,615$	

Figure 2.11 Guaranteed ranges for \mathbf{C} integral data types. The C standards require that the data types have at least these ranges of values.

Integer data types on stu

All sizes in bytes; sizes in red are larger than mandated by C99

char 1 unsigned char 1	$\begin{array}{rr} \text { int8_t } & 1 \\ \text { uint8_t } & 1 \\ \text { bool } & 1 \end{array}$
short 2	
unsigned short 2	int16_t 2
	uint16_t 2
int 4	
unsigned int 4	int32_t 4
	uint32_t 4
long 8	
unsigned long 8	int64_t 8
long long 8	uint64_t 8
unsigned long long 8	size_t 8

Unsigned encoding

- Bit i represents the value 2^{i}
- Bits typically written from most to least significant (i.e., $2^{3} 2^{2} 2^{1} 2^{0}$)
- This is the same encoding we saw last time!
- No representation of negative numbers

$$
\begin{aligned}
& 1=\quad 1=0 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[0001] \\
& 5=4+\mathbf{1}=0 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[0101] \\
& 11=8+\quad 2+1=1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=[1011] \\
& 15=8+4+2+1=1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=[1111]
\end{aligned}
$$

Unsigned encoding

- Textbook's notation
- Each bar represents a bit
- Add together bars to represent the contributions of each bit value to the overall value

Figure 2.12
Unsigned number examples for $w=4$.
When bit i in the binary representation has value 1 , it contributes 2^{i} to the value.

Signed encodings

- Sign magnitude
- Most natural and intuitive
- Ones' complement
- Helps with two's complement conversions
- Two's complement
- Easiest arithmetic; not intuitive

Sign magnitude

- Sign magnitude
- Interpret most-significant bit as a sign bit
- Interpret remaining bits as a normal unsigned int (the magnitude)
- Disadvantages:
- Two zeros: -0 and +0 [1000 and 0000]
- Less useful for arithmetic because the sign bit has no relationship with the magnitude--cannot use unsigned arithmetic logic!
$0011=3$
$1011=-3$
$0111=7$
0111 (7)
$1011(-3)$
? 010

Ones' complement

- Ones' complement

- Invert all the bits (~ operator in C) to negate
- Still two representations of zero
- Also, less useful for arithmetic than two's complement
- However, there is a neat trick: to perform two's complement, just do ones' complement then add one

$$
\text { Ex: } 5=0101 \rightarrow(\text { one's comp. }) \rightarrow 1010 \rightarrow(\text { add one }) \rightarrow 1011=-5(-8+2+1)
$$

Aside: Why does this work? The sum of a number x and its ones' complement is all ones (or $2^{\mathrm{N}}-1$ where N is the number of bits), so its ones' complement can be expressed as $2^{N}-1-x$. Because taking the two's complement of x is equivalent to subtracting x from 2^{N}, if we add one to the ones' complement the results are equal:
$\left(2^{N}-1-x\right)+1=2^{N}-x$

Two's complement encoding

- Two's complement makes half of all representable values negative
- One more negative number than positive numbers

1111	-1
\ldots	
1001	-7
1000	-8
0111	7
\ldots	
0001	1
0000	0

Two's complement encoding

- Alternate interpretation: value of most significant bit is negated
- Essentially, this makes half of all representable values negative

Figure 2.16
Comparing unsigned and two's-complement representations for $w=4$. The weight of the most significant bit is -8 for two's complement and +8 for unsigned, yielding a net difference of 16 .

Figure 2.17
Conversion from two's complement to unsigned. Function T2U converts negative numbers to large positive numbers.

Two's complement encoding

- Two's complement is equivalent to subtracting the number from 2^{N}, where N is the number of bits in the integer
- Advantage: uses unsigned arithmetic logic (ignore carries out of the sign bit)
- Ex: $5-3=5+(-3)=0101+1101=0010(2)$
- Ex: $1-3=1+(-3)=0001+1101=1110(-2)$
- Ex: $-2-3=(-2)+(-3)=1110+1101=1011(-5)$
$0011=3$
$1100=$
$1101=-3$
$0111=7$

$0111 \quad(7)$
$1101 \quad(-3)$
$0100 \quad(4)$

Integer representations

- Information = Bits + Context
- What does "1011" mean? It depends!

Unsigned:
Sign magnitude:
Ones' complement:
Two's complement:

Conversions

- Smaller unsigned \rightarrow larger unsigned

```
0101 (5) -> 0000 0101 (5)
```

- Safe; zero-extend to preserve value
- Smaller two's comp. \rightarrow larger two's comp.
$1101(-3) \rightarrow 11111101(-3)$
- Safe; sign-extend to preserve value
- Larger \rightarrow smaller (unsigned or two's comp.)

00000101 (5) $\rightarrow 0101$ (5) 00110101 (53) $\rightarrow 0101$ (5)

- Overflow if new type isn't large enough to fit (otherwise, truncate)
- Unsigned \rightarrow two's comp.
- Overflow if first bit is non-zero (otherwise, no change)
- Two's comp. \rightarrow unsigned

```
0101 (5) -> 0101 (5)
1101 (13) -> 1101 (-2)
```

- Overflow if value is negative (otherwise, no change)

```
0101 (5) -> 0101 (5)
1101 (-2) -> 1101 (13)
```

