CS 261
Fall 2017

Mike Lam, Professor

v+ 1,306... 1,307. ..

BAaaA

5D
/F—f;::}

-

e 32,767...-32,768...

275

i=]

. .=32,767... 32,766 ...

o g5

=5

Integer Encodings

https://xkcd.com/571/

* Topics
- C integer data types
— Unsigned encoding
- Signed encodings
— Conversions

I Integer data types in C99

C data type Minimum Maximum
|signed] char —127 d 35,4
unsigned char 0 255
short —32,767 32,767
unsigned short 0 65,535
int —32,767 32,767
unsigned 0 65,535
long —2,147,483,647 2,147,483,647
unsigned long 0 4,294,967,295
int32_t —2,147,483,648 2,147,483,647
uint32_t 0 4,294.967,295
int64_t —9,223,372,036,854,775,808 9,223,372,036,854,775,807
uint64_t 0 18,446,744,073,709,551,615

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

8 bytes

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require
that the data types have at least these ranges of values.

I Integer data types on stu

All sizes in bytes; sizes in red are larger than mandated by C99

char 1 int8_t 1
unsigned char 1 uint8_t 1
bool 1

short 2
unsigned short 2 intl6e_t 2
uintl6é_t 2

int 4
unsigned int 4 int32_t 4
uint32_t 4

long 8
unsigned long 8 int64_t 8
long long 8 uint64_t 8
unsigned long long 8 size_t 8

I Unsigned encoding

* Bit | represents the value 2i

- Bits typically written from most to least significant (i.e., 23 22 21 20)
- This Is the same encoding we saw last time!
- No representation of negative numbers

1 = 1= -1-2° =[0001]
5 = +1= 22+ -1-2°=[0101]
11=8+ 2+1=12%+ 121+ 1-2°=[1011]

15=8+4+2+1=1-22+1-22+1-2' +1-:2°=[1111]

I Unsigned encoding

e Textbook’s notation

— Each bar represents a bit

— Add together bars to represent the contributions of each
bit value to the overall value

i > s L W
Unsigned number B

examples for w =4. 2=+ D

When bit i in the binary 2'=2 [

representation has value 1, 20 _ 1 '

it contributes 2’ to the

01234567 8 910111213141516

value.

[0001]
[0101]
[1011]
[1111]

I Signed encodings

* Signh magnitude

- Most natural and intuitive
* Ones’ complement

- Helps with two’s complement conversions
* Two’'s complement

- Easiest arithmetic; not intuitive

I Sign magnitude

* Sigh magnitude
— Interpret most-significant bit as a sign bit

- Interpret remaining bits as a normal unsigned int (the magnitude)

- Disadvantages:

* Two zeros: -0 and +0 [1000 and 0000]

* Less useful for arithmetic because the sign bit has no relationship with
the magnitude--cannot use unsigned arithmetic logic!

0011 =3 0 111 (7)
1011 = -3 1 011 (-3)
0 111 = 7 [

I Ones’ complement

* Ones’ complement

- Invert all the bits (~ operator in C) to negate
— Still two representations of zero
- Also, less useful for arithmetic than two’s complement

- However, there is a neat trick: to perform two’s complement, just
do ones’ complement then add one

Ex: 5=0101 - (one’scomp.) - 1010 - (addone) - 1011 =-5 (-8+2 +1)

Aside: Why does this work? The sum of a number x and its ones’ complement is all
ones (or 2N-1 where N is the number of bits), so its ones' complement can be
expressed as 2N-1 - x. Because taking the two’s complement of x is equivalent to
subtracting x from 2V, if we add one to the ones' complement the results are equal:

(2N-1-x)+1=2V-x

I Two’s complement encoding

* Two’s complement makes half of all representable
values negative

- One more negative number than positive numbers

1111 -1 i
1001 -/ ol j- 2*-1 Unsigned
1000 -8 N AN

0111 7 wos ||

complement 0T |
0001 negative numbers Sl 1{
_pw-

1
0000 0

I Two’s complement encoding

* Alternate interpretation: value of most significant bit is negated
- Essentially, this makes half of all representable values negative

Figure 2,16 DT

Comparing unsigned g

and two’s-complement > N

representations for w = 4. 2° = 4 e

The weight of the most 2 =2 [

significant bit is —8 for =1

two's complement and +8 -8 -7 -6 -5 -4 —3 —2 1012345678 910112 13 14 15 1.5

|||||||||||||||||

for unsigned, yielding a net T [i e [L T A t
SR s -ﬂ _—ﬂ
I +186 -l
o111 DD _-D

Figure 2.17 - v
Conversion from two's
complement to unsigned.
Function 72U converts
negative numbers to large

ositive numbers. Two's
p
complement

—»

. Lol

st + 2" Unsigned

Lo

negative numbers

I Two’s complement encoding

* Two’s complement is equivalent to subtracting the number
from 2N, where N is the number of bits in the integer

* Advantage: uses unsigned arithmetic logic (ignore carries out
of the sign bit)

- Ex:5-3=5+(-3) =0101 + 1101 = 0010 (2)
- Ex:1-3=1+(-3)=0001 + 1101 = 1110 (-2)
- Ex:-2-3=(-2)+(-3) =1110 + 1101 = 1011 (-5)

w0 2"-"

0011 = 3 0111 (7)

1100 1101 ('3) + 2" Unsigned

1101 = -3 0100 (4) e b
complement

111 = 7

negative numbers

I Integer representations

* Information = Bits + Context
- What does “1011" mean? It depends!

Unsigned: 11
Sigh magnitude: -3
Ones' complement. -4
Two's complement: -5

I cConversions

Smaller unsigned - larger unsigned 0101 (5) - 0000 0101 (5)

- Safe; zero-extend to preserve value

Smaller two’s comp. — larger two’s comp. 1101 (-3) - 1111 1101 (-3)
- Safe; sign-extend to preserve value

0101 (5) - 0101 (5)
0011 0101 (53) - 0101 (5)

Larger — smaller (unsigned or two’s comp.)
- Overflow if new type isn’t large enough to fit (otherwise, truncate)

Unsigned — two’s comp. o1 {32y~ 1161 (2

— Overflow if first bit is non-zero (otherwise, no change)

Two’s comp. — unsigned 101 (5) - 0101 (5)

- Overflow if value is negative (otherwise, no change) =101 (-2) - 1101 (13)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

