

CS 261
Fall 2017

Mike Lam, Professor

Integer Encodings

https://xkcd.com/571/

Integers

● Topics
– C integer data types
– Unsigned encoding
– Signed encodings
– Conversions

Integer data types in C99

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

8 bytes

Integer data types on stu

 char 1
 unsigned char 1

 short 2
 unsigned short 2

 int 4
 unsigned int 4

 long 8
 unsigned long 8
 long long 8
 unsigned long long 8

int8_t 1
 uint8_t 1

bool 1

 int16_t 2
 uint16_t 2

 int32_t 4
 uint32_t 4

 int64_t 8
 uint64_t 8

size_t 8

All sizes in bytes; sizes in red are larger than mandated by C99

Unsigned encoding

● Bit i represents the value 2i

– Bits typically written from most to least significant (i.e., 23 22 21 20)
– This is the same encoding we saw last time!
– No representation of negative numbers

1 = 1 = 0∙23 + 0∙22 + 0∙21 + 1∙20 = [0001]

5 = 4 + 1 = 0∙23 + 1∙22 + 0∙21 + 1∙20 = [0101]

11 = 8 + 2 + 1 = 1∙23 + 0∙22 + 1∙21 + 1∙20 = [1011]

15 = 8 + 4 + 2 + 1 = 1∙23 + 1∙22 + 1∙21 + 1∙20 = [1111]

Unsigned encoding

● Textbook’s notation
– Each bar represents a bit
– Add together bars to represent the contributions of each

bit value to the overall value

Signed encodings

● Sign magnitude
– Most natural and intuitive

● Ones’ complement
– Helps with two’s complement conversions

● Two’s complement
– Easiest arithmetic; not intuitive

Sign magnitude

● Sign magnitude
– Interpret most-significant bit as a sign bit
– Interpret remaining bits as a normal unsigned int (the magnitude)
– Disadvantages:

● Two zeros: -0 and +0 [1000 and 0000]
● Less useful for arithmetic because the sign bit has no relationship with

the magnitude--cannot use unsigned arithmetic logic!

0 011 = 3
1 011 = -3

0 111 = 7

0 111 (7)
1 011 (-3)

? 010

Ones’ complement

● Ones’ complement
– Invert all the bits (~ operator in C) to negate

– Still two representations of zero
– Also, less useful for arithmetic than two’s complement
– However, there is a neat trick: to perform two’s complement, just

do ones’ complement then add one

Ex: 5 = 0101 → (one’s comp.) → 1010 → (add one) → 1011 = -5 (-8 + 2 + 1)

Aside: Why does this work? The sum of a number x and its ones’ complement is all
ones (or 2N-1 where N is the number of bits), so its ones' complement can be
expressed as 2N-1 - x. Because taking the two’s complement of x is equivalent to
subtracting x from 2N, if we add one to the ones' complement the results are equal:

(2N-1 - x) + 1 = 2N - x

Two’s complement encoding

● Two’s complement makes half of all representable
values negative
– One more negative number than positive numbers

1111 -1
…
1001 -7
1000 -8
0111 7
…
0001 1
0000 0

negative numbers

Two’s complement encoding

● Alternate interpretation: value of most significant bit is negated
– Essentially, this makes half of all representable values negative

negative numbers

Two’s complement encoding

● Two’s complement is equivalent to subtracting the number
from 2N, where N is the number of bits in the integer

● Advantage: uses unsigned arithmetic logic (ignore carries out
of the sign bit)
– Ex: 5 – 3 = 5 + (-3) = 0101 + 1101 = 0010 (2)
– Ex: 1 – 3 = 1 + (-3) = 0001 + 1101 = 1110 (-2)
– Ex: -2 – 3 = (-2) + (-3) = 1110 + 1101 = 1011 (-5)

0011 = 3
1100
1101 = -3

0111 = 7

 0111 (7)
 1101 (-3)

 0100 (4)

negative numbers

Integer representations

● Information = Bits + Context
– What does “1011” mean? It depends!

Unsigned: 11
Sign magnitude: -3
Ones' complement: -4
Two's complement: -5

Conversions

● Smaller unsigned → larger unsigned
– Safe; zero-extend to preserve value

● Smaller two’s comp. → larger two’s comp.
– Safe; sign-extend to preserve value

● Larger → smaller (unsigned or two’s comp.)
– Overflow if new type isn’t large enough to fit (otherwise, truncate)

● Unsigned → two’s comp.
– Overflow if first bit is non-zero (otherwise, no change)

● Two’s comp. → unsigned
– Overflow if value is negative (otherwise, no change)

0101 (5) → 0000 0101 (5)

1101 (-3) → 1111 1101 (-3)

0000 0101 (5) → 0101 (5)
0011 0101 (53) → 0101 (5)

0101 (5) → 0101 (5)
1101 (13) → 1101 (-2)

0101 (5) → 0101 (5)
1101 (-2) → 1101 (13)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

