CS 261 Fall 2017

Mike Lam, Professor

https://xkcd.com/571/

Integer Encodings

Integers

- Topics
 - C integer data types
 - Unsigned encoding
 - Signed encodings
 - Conversions

Integer data types in C99

C data type	Minimum	Maximum		
[signed] char	-127	127	1 byte	
unsigned char	0	255		
short	-32,767	32,767	2 byte	
unsigned short	0	65,535		
int	-32,767	32,767	2 by to	
unsigned	0	65,535	2 bytes	
long	-2,147,483,647	2,147,483,647	1 byte	
unsigned long	0	4,294,967,295	4 bytes	
int32_t	-2,147,483,648	2,147,483,647	4 bytes	
uint32_t	0	4,294,967,295		
int64_t	-9,223,372,036,854,775,808	9,223,372,036,854,775,807	O ha ta	
uint64_t	0	18,446,744,073,709,551,615	8 byte	

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require that the data types have at least these ranges of values.

Integer data types on stu

All sizes in bytes; sizes in red are larger than mandated by C99

- int8_t 1 uint8_t 1 bool 1
- int16_t 2
- uint16_t 2
 - int32_t 4
- uint32_t 4
 - int64_t 8
- uint64_t 8
 - size_t 8

- char 1 unsigned char 1
 - short 2
- unsigned short 2
 - int 4
 - unsigned int 4
 - long 8
 - unsigned long 8
 - long long 8
- unsigned long long 8

Unsigned encoding

- Bit i represents the value 2^i
 - Bits typically written from most to least significant (i.e., 2³ 2² 2¹ 2⁰)
 - This is the same encoding we saw last time!
 - No representation of negative numbers

$$1 = 1 = 0 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} = [0001]$$

$$5 = 4 + 1 = 0 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} = [0101]$$

$$11 = 8 + 2 + 1 = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = [1011]$$

$$15 = 8 + 4 + 2 + 1 = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = [1111]$$

Unsigned encoding

- Textbook's notation
 - Each bar represents a bit
 - Add together bars to represent the contributions of each bit value to the overall value

Figure 2.12 Unsigned number examples for w = 4. When bit *i* in the binary representation has value 1, it contributes 2^i to the value.

Signed encodings

- Sign magnitude
 - Most natural and intuitive
- Ones' complement
 - Helps with two's complement conversions
- Two's complement
 - Easiest arithmetic; not intuitive

Sign magnitude

• Sign magnitude

- Interpret most-significant bit as a sign bit
- Interpret remaining bits as a normal unsigned int (the magnitude)
- Disadvantages:
 - Two zeros: -0 and +0 [1000 and 0000]
 - Less useful for arithmetic because the sign bit has no relationship with the magnitude--cannot use unsigned arithmetic logic!

0	011 = 3	0 111 (7)
1	011 = -3	<u>1 011 (-3)</u>
0	111 = 7	? 010

Ones' complement

- Ones' complement
 - Invert all the bits (~ operator in C) to negate
 - Still two representations of zero
 - Also, less useful for arithmetic than two's complement
 - However, there is a neat trick: to perform two's complement, just do ones' complement then add one

Ex: 5 = 0101 \rightarrow (one's comp.) \rightarrow 1010 \rightarrow (add one) \rightarrow 1011 = -5 (-8 + 2 + 1)

Aside: Why does this work? The sum of a number x and its ones' complement is all ones (or $2^{N}-1$ where N is the number of bits), so its ones' complement can be expressed as $2^{N}-1 - x$. Because taking the two's complement of x is equivalent to subtracting x from 2^{N} , if we add one to the ones' complement the results are equal:

 $(2^{N}-1 - x) + 1 = 2^{N} - x$

Two's complement encoding

- Two's complement makes half of all representable values negative
 - One more negative number than positive numbers

Two's complement encoding

- Alternate interpretation: value of most significant bit is negated
 - Essentially, this makes half of all representable values negative

Two's complement encoding

- Two's complement is equivalent to subtracting the number from 2^N, where N is the number of bits in the integer
- Advantage: uses unsigned arithmetic logic (ignore carries out of the sign bit)
 - Ex: 5 3 = 5 + (-3) = 0101 + 1101 = 0010 (2)
 - Ex: 1 3 = 1 + (-3) = 0001 + 1101 = 1110 (-2)
 - Ex: -2 3 = (-2) + (-3) = 1110 + 1101 = 1011 (-5)

Integer representations

- Information = Bits + Context
 - What does "1011" mean? It depends!

Unsigned:11Sign magnitude:-3Ones' complement:-4Two's complement:-5

Conversions

 Smaller unsigned → larger unsigned $0101 (5) \rightarrow 0000 0101 (5)$ - Safe; zero-extend to preserve value • Smaller two's comp. \rightarrow larger two's comp. **1**101 (-3) \rightarrow **1**111 1101 (-3) - Safe; sign-extend to preserve value 0000 0101 (5) \rightarrow 0101 (5) $0011 \ 0101 \ (53) \rightarrow 0101 \ (5)$ • Larger \rightarrow smaller (unsigned or two's comp.) - Overflow if new type isn't large enough to fit (otherwise, truncate) $0101 (5) \rightarrow 0101 (5)$ • Unsigned \rightarrow two's comp. $1101 (13) \rightarrow 1101 (-2)$ - Overflow if first bit is non-zero (otherwise, no change) • Two's comp. \rightarrow unsigned $0101(5) \rightarrow 0101(5)$ $\underline{1}$ 101 (-2) \rightarrow 1101 (13) - Overflow if value is negative (otherwise, no change)