

CS 261
Fall 2017

Mike Lam, Professor

Computer Systems I: Introduction

Group warm-up activity
 (2-3 people per group; introduce yourself to one or two others first!)

1) Choose one of the following C programs and predict its output.

2) Log into a lab laptop with your e-ID/password (or as “student” with no password).

3) Create a file called main.c and enter the code for the program you chose.

4) Compile and run your program from a terminal with the following commands:

5) What is the output?

#include <stdio.h>
int main() {
 int x = 40000;
 int y = 50000;
 if ((x * x) < (y * y)) {
 printf("Less than\n");
 } else {
 printf("Not less than\n");
 }
 return 0;
}

#include <stdio.h>
int main() {
 double a = 1e20;
 double b = -a;
 double c = 3.14;
 if (((a+b) + c) == (a + (b+c))) {
 printf("Equal!\n");
 } else {
 printf("Not equal!\n");
 }
 return 0;
}

gcc -o program main.c
./program

(alternatively, just copy/paste into ideone.com)

More intrigue

● Which of the following versions of a “matrix copy”
routine will run the fastest?
– Or will they always take the same amount of time?

 for (int i = 0; i < 2048; i++) {
 for (int j = 0; j < 2048; j++) {
 dst[i][j] = src[i][j];
 }
 }

 for (int j = 0; j < 2048; j++) {
 for (int i = 0; i < 2048; i++) {
 dst[i][j] = src[i][j];
 }
 }

What's happening?

● Something about our mental model of these programs
does not match the system on which we're running them.

Systems

● What is a “system?”
– Can you give some examples?

Systems

● What is a “system?”
– Set of interacting components
– More than the sum of its parts

ComputerJet engine

Systems

● What is a “system?”
– Set of interacting components
– More than the sum of its parts

ComputerJet engine

Systems

● What is a “system?”
– Set of interacting components
– More than the sum of its parts

ComputerJet engine

Systems

● A computer system consists of multiple hardware
and software components that work together to run
user applications.

● Why do we care about computer systems?
– We use complex computer systems every day
– Also: it's your major!

● Our goal: peel back some of the complexity
– See what’s “under the hood”
– It’s also worth thinking about why the complexity was

hidden; i.e., what is the purpose of abstraction?

Systems

● What is a process? What is a file?

Systems

● What is a process? What is a file?
– These are examples of abstraction; "fake" views of reality

that reduce complexity for users
– Key ideas: ignore details and focus on interfaces
– Especially important in large, complicated systems
– Understanding abstractions can improve your ability to use

them effectively

abstraction

Caveat

● Software system vs systems software
– Former: interconnected software components
– Latter: software providing services to other software
– We are concerned with both!

● Examples: multiprocessing, networking, operating systems,
compilers, distributed systems

Course Objectives

● Explain machine-level representation of data and code
● Summarize the architecture of a computer
● Explain how complex systems are built from simple components
● Translate high-level code into assembly and machine language
● Write code to emulate the functionality of a computer

● Cultivate a sense of control over computer systems
● Gain an appreciation for software development tools
● Develop a sense of play when writing code
● Appreciate the complexity of systems-level software

Course Objectives

● Explain machine-level representation of data and code
● Summarize the architecture of a computer
● Explain how complex systems are built from simple components
● Translate high-level code into assembly and machine language
● Write code to emulate the functionality of a computer

● Cultivate a sense of control over computer systems
● Gain an appreciation for software development tools
● Develop a sense of play when writing code
● Appreciate the complexity of systems-level software

Systems courses

● CS 261 units:
– C and Linux (3 weeks)
– Binary Representations (2-3 weeks)
– Assembly and Machine Code (2 weeks)
– Computer Architecture (3 weeks)
– Operating Systems Concepts (3 weeks)

CS 261
Computer Systems I

CS 361
Computer Systems II

CS 450
Operating Systems

CS 432
Compilers

CS 470
Parallel & Distributed

Systems

CS 456
CPU Architecture

Fundamentals of digital,
single-process systems

Multi-process systems
and networking

In-depth study of a particular
kind of complex system

CS 261

● What this course is NOT:
– Programming 101 – I will assume you can program

● However, we will spend a few weeks learning C

– Electronics 101 – we won’t be going THAT deep
● If you’re interested, check out PHYS 240/250

– Linux 101 – but you have the Unix Users Group
● InstallFest on Wed, Sep 6 at 6:30 in ISAT/CS 246
● Weekly meetings thereafter (same time and place)

CS 261

● This is not an “easy” course
– But you can handle it!
– Be prepared to read and work a lot
– Don't be afraid to experiment
– Learn the why and not just the what
– Some stuff is worth memorizing

● (e.g., powers of two and hex characters)

– For other stuff, Google is your friend
– Piazza is also your friend (literally)
– Start assignments early and ask questions

“More software projects have gone awry for lack of time

than for all other causes combined. Why is this so common?

First, our estimating techniques reflect an untrue assumption;

i.e., that all will go well.

Second, our estimating techniques confuse effort with progress,

hiding the assumption that people and time are interchangeable.”

 – Fred Brooks, “The Mythical Man-Month” (edited)

Course Components

● Public website (w3.cs.jmu.edu/lam2mo/cs261)
– Syllabus, calendar, assignments, and resources (links)

● Canvas course
– Concept quizzes and unit tests
– Grades and private files (i.e., solutions)
– Piazza Q&A and discussion forum

● Student server (stu.cs.jmu.edu)
– Project development and submission

● Make sure you can access all of these!

Course Grades

Quizzes and Labs 20%

Programming Projects 40%

Online Unit Tests 20%

Written Exams 20%

● Quizzes and labs are formative
– Designed to help you learn

● Projects and tests/exams are summative
– Designed to assess what you have learned

Textbook(s)

● Required textbook: “Computer Systems”
– “CS:APP” textbook from Carnegie-Mellon
– A practical, example-filled introduction to systems
– Reserve copy at the library

● Recommended book: "The C Programming Language"
– Brian Kernighan and Dennis Ritchie (creator of C)
– This is “the book” about C
– Available on Safari Books through the library

Class Policies

● Check Canvas daily for quizzes
● Class attendance is necessary

– We will be “learning by doing” much of the time
– Find a group (2-3 people) to work with consistently, or

switch it up
● Slides will be posted on the website

– No need to copy them to your notes
● Please silence your cell phones during class

– Be respectful with laptop and tablet usage

Course Policies

● Submit programming projects using submit script on stu
– No thumb drives, CDs, or emails

● Project grading will be based on automated test results
– You will not have access to all test code
– Deductions will be applied for unacceptable style and/or

documentation based on a manual inspection of the code
– See the code guidelines on the website for policies

● Project late policy: submissions up to 72 hours late will
receive a letter grade penalty per 24 hr period
– Projects are due on Friday so that you can take advantage of

the weekend for this if necessary

Course Policies

● The JMU Honor Code applies on ALL assignments
– Violations may be sent to the honor council
– See relevant section in the syllabus

● All submitted project code must be YOUR work entirely
– You may work in groups to discuss general approaches (in

fact, I encourage this; use pseudocode if necessary)
– However, the primary goal of the projects in this course is to

develop individual competency, so you may NOT share code
– This includes letting someone examine or take a photo of your

code, or “talking it through” with them line-by-line
– If you have questions about this, please ask!

Course Policies

● There are a total of three sections of CS 261
– Two Lam sections and one Weikle section (all T-Th)
– Projects, unit tests, and exams are common
– Quizzes and labs may differ
– You are welcome to study with students from other

sections, but you must attend and submit assignments to
the section you are registered for

Intro lab

● Material from Chapter 1
● Front page: Computer Organization
● Back page: C Compilation
● Work in groups of 2-3 (no computer required)
● Submit at end of class

Have a great semester!

● Before Thursday:
– Take the intro survey on Canvas
– Read sections 1.1-1.4 and 1.8 in CS:APP and take

quiz
– Make sure you can log into stu

– Make sure you can access Piazza
– Review these slides
– Read project guide on website

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

