## CS 261 (Computer Systems I) - Y86-64 Lab

Submit on stu using the normal project submission script (it will be project " $y 1$ "). Put the names of all your group members in a one-line comment at the top of your files beginning with "\# Name:". Only one person per group should submit the files. This lab is due on Friday, Oct 21.

## Part 1 - Basic Arithmetic

Write a Y86-64 program called "arith. ys" that will calculate the answers to the following arithmetic problems and put the results in the specified registers:
$3+4$
(\%rcx)

24-8
(\%rbx)
$3+4-5$
(\%rbp)

## Part 2 - Loops

Write a Y86-64 program called "fib.ys" that calculates the first 10 Fibonacci numbers (1, 1, 2, 3, etc.) using a loop. The numbers should be written to 8 -byte slots in memory starting at location $0 \times 400$.

## Part 3 - Functions

Write a Y86-64 program called "sum. ys" that is equivalent to the following C code. You must implement x86 calling conventions for sum( ) with parameters in \%rdi and \%rsi (respectively) and a return value in \%rax. Note that this means that sum ( ) must save/restore \%rbx and \%rbp if they are used.

```
int64_t nums[] = { 1, 2, 3, 4 };
int64_t len = 4;
int64_t main (void)
{
    return sum (nums, len);
}
int64_t sum (int64_t *array, int64_t size)
{
    int64_t result = 0;
    while (size > 0) {
        result += *array;
        array++;
        size--;
    }
    return result;
}
```

The global array and its length should be stored in a data segment as follows:

```
.pos 0x300 data
len:
    .quad 4
nums:
    .quad 1
    .quad 2
    .quad 3
    .quad 4
```

