

CS 261
Fall 2016

Mike Lam, Professor

Files

Files

● A file is a sequence of bytes

– Logical abstraction provided by the operating system

– In Linux, many things are represented as files

– All I/O is performed by reading/writing "files"

– Raw format on disk is determined by file system
● Common file systems: FAT32, NTFS, HFS+, ext4, Lustre

● Basic file operations:

– Open a file (returns a file descriptor)

– Change current position (seek)

– Read and write bytes

– Close a file (kernel does this if the process does not)

Files

● Regular files – contain arbitrary data

– Binary vs. text file distinction (applications only)

– Context is crucial! (Info = Bits + Context)
● All files are “binary”!

● Directory files – contain links to other files

– Special links: "." (self) and ".." (parent)

● Socket files – links to another process

– Could be on another computer

– Used for inter-process communication (IPC)

– You'll learn to use these in CS 361

File systems

● File systems abstract the details of file storage

– Manage logical → hardware mapping

– Manage metadata (stored in inodes)

● File systems must be mounted

– One “root” file system (“/”); use mount to add others

– Mounted into a specific mount point in root file system

– Usually auto-mounted according to /etc/fstab

– Use df utility to view mounted file systems

– File system can be mounted from another machine
● Networked File System (NFS)

File system hierarchy

● File system hierarchy standard (FHS)

● Absolute vs. relative pathnames

– Absolute: path from root (/)

– Relative: path from current working directory

Directory contents

● Use "dirent" functions
– #include dirent.h

– opendir(), dirent(), closedir()

 // open current directory listing
 DIR *dir = opendir(".");
 struct dirent *entry = readdir(dir);
 while (entry != NULL) {

 // print file information
 printf("[%d] %s (%d bytes)\n",
 (int)entry->d_ino, entry->d_name);

 // next file in listing
 entry = readdir(dir);
 }
 closedir(dir);

File metadata

● Metadata is information about a file

– Stored in an inode by the file system or kernel

– Use stat() or fstat() to obtain a file's metadata

– Need unistd.h and sys/stat.h

– Information:
● File type (regular, directory, socket)
● User and group owner IDs
● Total size (in bytes or blocks)
● Date/time of last access/modification
● Device ID
● Pointers to file data on device (direct or indirect)

File sharing

● Open files can be shared among processes

– Descriptor table (per-process)

– Open file table (shared) - use lsof utility to view

– inode table (shared) - called “v-node” table in textbook

inode

Low-level file I/O

● Raw file I/O system calls
– open, read, write

– Uses integer file descriptors

● C standard file I/O streams (libc)
– fopen, fread, fgets, fwrite, fprintf, fseek, fclose

– Uses FILE stream data structure abstraction

– Provides buffering and line ending translation

– More portable!

Standard I/O

● Three C standard file streams for every process

– Standard input (stdin)

– Standard output (stdout)

– Standard error (stderr)

– In Java: System.in, System.out, and System.err

● Used by default in some places

– printf("Hello!") means fprintf(stdout, "Hello!")

a.out stdoutstdin

stderr

I/O redirection

● Linux shells allow you to redirect standard I/O streams

– Standard out: echo "Hello" > data.txt
● By default, prints to the console

– Standard in: cat < data.txt

● By default, reads from the keyboard
● Use CTRL-D to signal “end” of input

– Standard err: ./mybigapp 2> log.txt

– Out and err: ./mybigapp &> output.txt

– Pipes: ls */*.c | grep "p4"
● Can combine with redirection: ls */*.c | grep "p4" > p4-files.txt

ls grep p4-files.txt

File permissions

● Traditional Unix permissions

– Three bits: read, write, execute
● Stored in inode; interpreted using octal

– Three categories: user, group, other

– Every file has a user owner and a group
● “Other” = everyone else (not owner or in group)

– See output of “ls -l” and “groups”

– Change permissions using chmod

● chmod u+x <file> (add execute permission for user)
● chmod go-w <file> (remove write permission for group/other)
● chmod a+r <file> (add read permission for everyone)
● chmod 644 <file> (set permissions to rw-r--r--)

-rw-r--r--
user group other

directory?

File permissions

● Access Control Lists (ACLs)

– Newer mechanism (more complex but more flexible)

– Any desired permission at any desired granularity
● getfacl() / setfacl()

– Useful for fine-grained permissions
● Example: your PA submission folders for this class

– Interactions with traditional permissions can be tricky
● Effective permissions are the intersection of traditional and ACL

Review: Operating Systems

● Bits + Context

● Abstraction

Review: Operating Systems

● Bits + Context

● Abstraction

P1 - P4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

