

CS 261
Fall 2016

Mike Lam, Professor

Signals

Processes and shells

● job – shell-level abstraction for a group of processes

– All spawned as a result of the same command

● Foreground vs. background jobs

– A single foreground job (interactive I/O)

– Zero or more background jobs

– Use '&' to start something in the background
● Ex: "./my_prog &"

– Use CTRL-Z to send foreground job to background

– Use CTRL-C to interrupt the foreground job

– fg: promote background job to foreground

Extra demos

● pmap and strace

– See effects of ASLR and syscalls

Signals

● Signal: abstraction for exceptional control flow

– A standard, clean way to handle exceptions

– Low-level details do not matter

● Signals are sent and received

– Kernel sends a signal when it detects an exception

– Processes can also send each other signals

– The destination process may ignore the signal, terminate, or
catch the signal w/ a signal handler

● man signal for complete guide (“kill -l” for short list)

– We'll just learn the basics today

Important signals

● SIGINT (#2) – interrupt from keyboard (CTRL-C)

● SIGABRT (#6) – abort() function was called

● SIGBUS (#7) – I/O bus error

● SIGFPE (#8) – floating-point exception

● SIGKILL (#9) – kill process

● SIGSEGV (#11) – segmentation fault

● SIGALRM (#14) – interval timer; set with alarm()

● SIGTERM (#15) – terminate process (softer than SIGKILL)

● SIGCHILD (#17) – a child process has terminated

● SIGUSR1 / SIGUSR2 – custom signals

Handling signals in C

● #include <signal.h>

● signal() / sigaction(): install signal handler

– Parameters:
● signum – signal number

● handler – new action

– SIG_IGN – ignore

– SIG_DFL – restore default

– otherwise: the address of a signal handler function (i.e., a function pointer)

– Signal handlers must take an int (the signal number) and return void

– sigaction is more portable but also more complex

● raise() / kill(): send a signal

– Former sends to current process, latter sends to a specific pid

Signal example (SIGALRM)

void handler (int sig)
{
 write(1, "Signal!\n", 9);
}

int main ()
{
 signal(SIGALRM, handler); // install signal handler

 alarm(1); // set alarm

 while (1) { } // infinite loop

 return 0;
}

Safe signal handlers

● Most important

– Keep it simple

– Only use async-signal-safe functions
● See man signal for a list

● Less important

– Save/restore "errno" global variable

– Declare global variables as "volatile"

– Declare global flags using atomic type

Signal example (SIGINT)

#define BUFSIZE 1024

void handler (int sig)
{
 write(1, "Signal!\n", 9);
}

int main ()
{
 char buf[BUFSIZE];
 int i = 0;

 // install signal handler
 signal(SIGINT, handler);

 // read / print loop
 while (fgets(buf, BUFSIZE, stdin) != 0) {
 printf("Line %d: %s", i++, buf);
 }

 return 0;
}

Signal example (SIGSEGV)

void handler (int sig)
{
 write(1, "OK\n", 4);
 exit(0);
}

int main ()
{
 int *p = 0;

 signal(SIGSEGV, handler); // install segfault handler

 int v = *p; // null pointer dereference

 printf("Here!\n"); // won't get here
 return v;
}

Signal example (raising signals)

void handler (int sig)
{
 write(1, "Hello!\n", 8);
}

int main ()
{
 signal(SIGUSR1, handler);
 raise(SIGUSR1);
 raise(SIGSEGV);
 return 0;
}

Signals in debuggers

● By default, signals are caught by gdb

– Most cause execution to be paused for debugging
● E.g., SIGINT (CTRL-C)

– Some are also passed through to the user program
● Not SIGINT, but SIGSEGV and others

● GDB allows you to change this behavior

– info signal – show current behavior

– handle <signal> <option> – change behavior
● stop/nostop: pause the program?

● print/noprint: notify the user w/ a message?

● pass/nopass: pass signal through to program?

Parallel computation w/ processes

● Spawn multiple processes

– Use a shell script or multiple fork() calls

– Processes run concurrently
● If CPU is single-core, they multitask on that core
● If CPU is multi-core, they execute in parallel

● Communicate via signals, files, or sockets

– No shared memory space

– Use message-passing to coordinate computation
● More about this in CS 361 (and potentially CS 470)

– Next week we'll see a different approach
● Shared memory: multiple threads share a single address space
● Potentially faster but more dangerous

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

