

CS 261
Fall 2016

Mike Lam, Professor

Processes

Processes

● Process: instance of an executing program

– Independent single logical flow and private virtual address space

● Logical flow: sequence of executed instructions

● Concurrency: overlapping logical flows

● Multitasking: processes take turns

● Parallelism: concurrent flows on separate CPUs/cores

Time

Logical
flow

Concurrent
flows

Multitasking
concurrent

flows

Parallel
concurrent

flows

CPU Core1 Core2

Implementing processes

● Processes are abstractions

– Implemented/provided by the operating system kernel

– Kernel maintains data structure w/ process information
● Including an ID for each process (pid)

– Multitasking via exceptional control flow
● Periodic interrupt to switch processes
● Called round-robin switching

– Context switch: swapping current process
● Save context of old process
● Restore context of new process
● Pass control to the restored process

Linux process tools

● ps – list processes

– "ps -fe" to see all processes on the system

– "ps -fu <username>" to see your processes

● top – list processes, ordered by current CPU

– Auto-updates

● /proc – virtual filesystem exposing kernel data structures

● pmap – display memory map of a process

● strace – prints a list of system calls from a process

– Compile with "-static" to get cleaner traces

Process creation

● The fork() syscall creates a new process

– Initializes new entry in the kernel data structures

– To user code, the function call returns twice
● Once for original process (parent) and once for new process (child)
● Returns 0 in child process
● Returns child pid in parent process
● Both processes will continue executing concurrently

– Parent and child have separate address spaces
● Child's space is a duplicate of parent's at the time of the fork
● They will diverge after the fork!

– Child inherits parent's environment and open files

Process creation example

● Fork returns twice!

int main ()
{
 printf("Before fork\n");

 int pid = fork();

 printf("After fork: pid=%d\n", pid);

 return 0;
}

Process creation example

● What does this code do?

int main ()
{
 printf("Before fork\n");

 int pid1 = fork();

 printf("After fork: pid1=%d\n", pid1);

 int pid2 = fork();

 printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

 return 0;
}

Process creation example

● Fork returns twice! (every time)

– Beware of non-determinism and I/O interleaving

int main ()
{
 printf("Before fork\n");

 int pid1 = fork();

 printf("After fork: pid1=%d\n", pid1);

 int pid2 = fork();

 printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

 return 0;
}

Process creation example

● Fork returns twice! (every time)

– Beware of non-determinism and I/O interleaving

int main ()
{
 printf("Before fork\n");

 int pid1 = fork();

 printf("After fork: pid1=%d\n", pid1);

 int pid2 = fork();

 printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

 return 0;
}

Exercise: Modify this program to fork a total of three processes

Parent/child process example

● Parents can wait for children to finish

int main ()
{
 printf("Before fork\n");

 int pid = fork();

 if (pid != 0) { // parent
 wait(NULL);
 printf("Child has terminated.\n");

 } else { // child
 printf("Child is running.\n");
 }

 printf("After fork: pid=%d\n", pid);

 return 0;
}

Process control syscalls

● #include <stdlib.h>

– getenv: get environment variable value

– setenv: change environment variable value

● #include <unistd.h>

– fork: create a new process

– getpid: return current process id (pid)

– exit: terminate current process

– execve: load and run another program in the current process

– sleep: suspend process for specified time period

● #include <sys/wait.h>

– waitpid: wait for a child process to terminate

– wait: wait for all child processes to terminate

Fork/execve example

● Shells use fork() and execve() to run commands

int main ()
{
 printf("Before fork\n");
 int pid = fork();

 if (pid != 0) { // parent
 wait(NULL);
 printf("Child has terminated.\n");

 } else { // child
 printf("Child is running.\n");
 char *cmd = "/bin/uname";
 char *args[] = { "uname", "-a", NULL };
 char *env[] = { NULL };
 execve(cmd, args, env);
 printf("This won't print unless an error occurs.\n");
 }

 printf("After fork: pid=%d\n", pid);
 return 0;
}

/bin/uname

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

