

CS 261
Fall 2016

Mike Lam, Professor

Virtual Memory

Topics

● Operating systems

● Address spaces

● Virtual memory

● Address translation

● Memory allocation

Lingering questions

● What happens when you call malloc()?

– How exactly is memory allocated?

● What is the correspondence between addresses in machine
code and physical memory cells?

– Are Y86 operand addresses used by the hardware?

Lingering questions

● What happens when you call malloc()?

– How exactly is memory allocated?

● What is the correspondence between addresses in machine
code and physical memory cells?

– Are Y86 operand addresses used by the hardware?

● There’s a gap here ...

– In early machines, there was no gap; the machine ran one program
at a time and every program had complete control of the machine –
there was no need for malloc()

– Modern machines support multi-tasking, so this is not sufficient

– What we need is some kind of system software to mediate between
user programs and the hardware

Operating systems

● An operating system (OS) is systems software that provides
essential / fundamental system services

– Manages initialization (booting) and cleanup (shutdown)

– Manages hardware/software interactions (I/O)

– Manages running programs (scheduling)

– Manages memory (virtual memory)

– Manages data (file systems)

– Manages external devices (drivers & interrupts)

– Manages communication (networking)

– Manages security (permissions)

Kernel

● The OS kernel is the core piece of software that has
complete control over the system

– Direct access to all hardware (“kernel mode”)
● All other software runs in user mode

– Design philosophies: monolithic kernels vs. microkernels
● Classic debate: Tanenbaum vs. Torvalds

– Often designed to be small but extensible
● Plugins are called drivers

– Technically, “Linux” is a kernel
● The operating system is “GNU/Linux”
● Combination of Linux kernel and GNU userspace utilities

gnu

Tux

OS abstractions

● The OS provides many useful abstractions so that
programs don’t need to handle hardware details

– CS 450 covers operating systems in detail

● In this class:

– Virtual memory: logical view of memory hierarchy

– Process: logical view of a program running on a CPU

– Thread: logical flow of execution in a program

– File: logical view of data on a disk

Virtual memory

● Kernel translates between virtual and physical addresses

● Goals:

– Use main memory as a cache for disks

– Provide every process with a uniform view of memory

– Protect processes from interference

No virtual memory With virtual memory

Address spaces

● An address space is an ordered set of non-negative
integer addresses

– Ex: { 0, 1, 2, 3, … , 499, 500 }

– Linear address spaces don’t skip any addresses

– Two address spaces: virtual and physical

– Every byte has two addresses (virtual and physical)

Example: Y86 programs have a virtual address space
with addresses that range from 0x0 to 0x1000, which is

large enough to store 4K bytes

Virtual memory

● Fixed-sized memory partitioning

– Virtual address space into virtual pages

– Physical address space into physical pages (or frames)

– Pages are usually relatively large (4 KB to 2 MB)

● Virtual memory uses RAM as a cache for pages

– Process uses consistent virtual / logical addresses

– OS translates these to physical addresses as necessary
● Use a table for fast lookups!

– We will assume hardware handles L1, L2, & L3 SRAM caches

Virtual memory

● Virtual page groups:

– Unallocated: uninitialized pages

– Cached: allocated pages currently cached in physical memory

– Uncached: allocated pages not currently cached

Page tables

● Page table: OS data structure for page lookups (array of page table entries)

● DRAM cache misses (called page faults) are very expensive

– Disks are MUCH slower than DRAM

– Transferring pages back and forth is called paging or swapping

before page fault on VP 3 after page fault on VP 3

Address translation

● Memory management unit (MMU)

– On-chip CPU component for address translation

– Goal: perform translation as quickly as possible

● Translation lookaside buffer (TLB)

– Small cache of PTEs in MMUs

– Provides faster address translations (in most cases)

– It’s caches all the way down …

Virtual memory caveats

● Virtual memory works well if a program has good locality

– Especially temporal locality

– This is a compelling reason to design for good locality

● Virtual memory works well if a program has a working set
that fits in main memory

– If this is not true, the system may need to continuously swap
pages in and out

– This is called thrashing, and is a significant cause of poor
program performance

– Can be detected by profilers (via counting page faults)

Memory management

● Operating system provides memory allocation service

– mmap system call (malloc uses this)

– Creates virtual memory allocation

– Private regions: changes are only seen by owner
● Private, variable-sized region called the heap

– Shared regions: changes are seen by all processes
● Usually between heap and stack
● Multiple virtual addresses map to the same physical address
● Changes are seen by all processes
● Usually a read-only region for shared library code

Process address spaces

Typical Linux
process address
space

Kernel uses higher
addresses

Process address spaces

● OSes maintain a separate page table for every process

– Provides program linking consistency
● E.g., code always begins at 0x400000

– Simplifies efficient loading
● Don’t actually load data from disk until needed (more efficient than P2!)

– Streamlines library sharing
● Keep one physical copy with multiple virtual mappings

– Simplifies memory allocation
● malloc() doesn’t need to find contiguous physical memory

– Improves security
● Processes can’t see/edit each others’ address spaces

Memory allocation

● Explicit memory allocation

– Programmer must allocate and deallocate manually

– Example: malloc and free in C

● Implicit memory allocation

– Programmers allocate manually, then a garbage collector
determines when memory can be de-allocated safely

– Approaches: reference counting and mark & sweep

After the break

● We will continue discussing OS principles

– Layers of abstraction that simplify development

– Theme: systems software is a foundation

– If you like this material, plan on taking CS 450

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

