Caching

e Locality

e Caching
 Performance impact
 General strategies

I Locality

e Temporal locality: frequently-accessed items will
continue to be accessed In the future

— Theme: repetition is common

e Spatial locality: nearby addresses are more likely to
be accessed soon

— Theme: sequential access is common
e Why do we care?

— Programs with good locality run faster than programs with
poor locality

I Data locality

 Temporal locality: keep often-used values In higher
tiers of the memory hierarchy

o Spatial locality: use predictable access patterns

— Stride-1 reference pattern (sequential access)

— Stride-k reference pattern (every k elements)
— Closely related to row-major vs. column-major

— Allows for prefetching (predicting the next needed
element and preloading it)

I Instruction locality

 Normal execution exhibits spatial locality
— Instructions execute In sequence
— Control flow instructions inhibit locality
* Loops exhibit both temporal and spatial locality

— The body statements execute repeatedly (temporal
locality) and in sequence (spatial locality)

— Short loops are better

I Caching

 Acache Is a small, fast memory that acts as a buffer or
staging area for a larger, slower memory

— Fundamental CS system design concept
- Example: web browser cache

— Data is transferred between the cache and the slower
memory in blocks

— Slower caches use larger block sizes

— Cache hit vs. cache miss — did the cache have to transfer a
value from the lower level?

e Cache misses require blocks to be replaced or evicted
e Policies:
— Random replacement

— Least recently used
— Least frequently used

I Cache misses

e A cache always begins cold (empty)
— Every request will be a miss initially
* As the cache loads data, it is warmed up

— This effect can cause performance measurement
variation during experiments if not controlled for

 Aworking set Is a collection of elements needed
repeatedly for a particular computation

— If the working set doesn't fit in cache, this is called a
capacity miss

I Cache writes

* How should we handle writes to a cached value?

— Write-through: immediately update to lower level
e Typically used for higher levels of memory hierarchy
— Write-back: defer update until eviction
e Typically used for lower levels of memory hierarchy

e How should we handle write misses?

— Write-allocate: load then update
» Typically used for write-back caches

— No-write-allocate: update without loading
» Typically used for write-through caches

I Cache architecture

 Example: Intel Core i7

e Per-core:
- Registers
— L1 d-cache and i-cache

e Data and instructions
— L2 unified cache

e Shared:

— L3 unified cache
- Main memory

Regs
L1 L1
d-cache| |i-cache

L2 unified cache

Core 3
Regs
L1 L1
d-cache| |i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

I Performance impact

e Metrics

— Miss rate: # misses / # memory accesses

— Hit rate: 1 — miss rate

— Hit time: delay in accessing data for a cache hit

— Miss penalty: delay in loading data for a cache miss

- Read throughput (or "bandwidth"): the rate that a program reads
data from a memory system

e General observations:

— Larger cache = higher hit rate but higher hit time
— Lower miss rates = higher read throughput

 Working set size vs. throughput

14000

12000

-
o
8
o

8000

6000

Read throughput (MB/s)

4000

2000

0

Main
memory
region

L3 L2 15 |
cache cache cache
region region region

TN NN

W& & &
RO A S

i)

& & 4 g5 gb gk
%um@,%{bqﬁ?

Working set size (bytes)

e Stride vs. throughput

Read throughput (MB/s)

12000

10000 -

6000 -

4000 -

2000 -

One access per cache line

8000 l l
s1 S2 s3 s4 s5 s6 s7

Stride (x8 bytes)

g
f I I i:
s8 E s9 I s10 I s11

e Stride and WSS vs. read throughput

16000 e g ST Core i7 Haswell
| —_——— o i - S 2.1 GHz
L e e 32 KB L1 d-cache
14000 TR
g 1 _— " : 256 KB L2 cache
i 8 MB L3 cache
TE.-" b 1r 64 B block size
3 B0
g 10000
S 8000 " Ridges
= “of temporal
- locality
@
Slopes
of spatial
locality

Stride (x8 bytes)

32m

s
128m

(a) Version i jk

1
2
3
4
5
]
F

for (i = 0; i < n; i++)
for (j = Q; § < n; j#e) o
sum = 0.0;
for (k = 0; k < n; k+s)
sum += A[i] [k]+B[k][j];
Clil [j] += sum;

codedmenymarmalyimm.c

(c) Version jki

codedmeny/marmulymm.c

1
2
3
4
5
6

for (j = 0; j < m; jt)
for (k = 0; k < n; k++) {
r = BLk][j];
for (i = 0; i < n; i++)

Clil [j] += A[i) [k]#*r;

codedmentmatmdtmm.c

(e) Version kij

codednenmanltmm.e

i
2
3
4
5
[

for (k = 0; k < n; k++)
for (i = 0; i < n; i++) {
r = Ali] [k];
for (j = 0; j < n; j++)
Clil [j] += r+B[k][j];

code/memmatnialiimm.c

code/mentmatmultimm. e

(b) Version jik

codedmemymatmulemm.c

1 for (j = 0; j < m; j++)
2 for (i = 0; i < n; i++) {
3 sum = 0.0;
4 for (k = 0; k < n; k++)
5 sum += A[i] [k]*B[k] [j];
6 C[i]l[j] += sum;
7 }
code/mem/marmultimn.c
(d) Version kji
codelmemdmatmult/imm.c

for (k = 0; k < n; kt+)

1
2 for (j = 0; j < mn; j++) {
3 r = BLk]l[j];
4 for (1 = 0; i < n; i++)
5 Clil[j] += Al[i] [k]=*r;
[}
code/memimatmud/imm.c
(f) Version ikj
code/menymatmult/mm.c

for (1L = 0; i < n; i++)

1

2 for (k = 0; k < n; k++) {

3 r = A[i] [k];

4 for (j = 0; j < n; j++)
5 Clil[j] += r*B[K][j1;
6 1

code/mem/manmultimm.c

Figure 6.44 Six versions of matrix multiply. Each version is uniquely identified by the ordering of its loops.

I Case study: matrix multiply

100

) =

Cycles per inner loop iteration

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

—*— jki
- kji
> ijk
-o-jiik
——Kij
—A—ikj

I Optimization strategies

* Focus on the common cases

 Focus on the code regions that dominate runtime
 Focus on inner loops and minimize cache misses
e Favor repeated local accesses (temporal locality)
e Favor stride-1 access patterns (spatial locality)

e Virtual memory: an OS-level memory cache

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

