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I Locality

e Temporal locality: frequently-accessed items will
continue to be accessed In the future

— Theme: repetition is common

e Spatial locality: nearby addresses are more likely to
be accessed soon

— Theme: sequential access is common
e Why do we care?

— Programs with good locality run faster than programs with
poor locality



I Data locality

 Temporal locality: keep often-used values In higher
tiers of the memory hierarchy

o Spatial locality: use predictable access patterns

— Stride-1 reference pattern (sequential access)

— Stride-k reference pattern (every k elements)
— Closely related to row-major vs. column-major

— Allows for prefetching (predicting the next needed
element and preloading it)



I Instruction locality

 Normal execution exhibits spatial locality
— Instructions execute In sequence
— Control flow instructions inhibit locality
* Loops exhibit both temporal and spatial locality

— The body statements execute repeatedly (temporal
locality) and in sequence (spatial locality)

— Short loops are better



I Caching

 Acache Is a small, fast memory that acts as a buffer or
staging area for a larger, slower memory

— Fundamental CS system design concept
- Example: web browser cache

— Data is transferred between the cache and the slower
memory in blocks

— Slower caches use larger block sizes

— Cache hit vs. cache miss — did the cache have to transfer a
value from the lower level?



e Cache misses require blocks to be replaced or evicted
e Policies:
— Random replacement

— Least recently used
— Least frequently used



I Cache misses

e A cache always begins cold (empty)
— Every request will be a miss initially
* As the cache loads data, it is warmed up

— This effect can cause performance measurement
variation during experiments if not controlled for

 Aworking set Is a collection of elements needed
repeatedly for a particular computation

— If the working set doesn't fit in cache, this is called a
capacity miss



I Cache writes

* How should we handle writes to a cached value?

— Write-through: immediately update to lower level
e Typically used for higher levels of memory hierarchy
— Write-back: defer update until eviction
e Typically used for lower levels of memory hierarchy

e How should we handle write misses?

— Write-allocate: load then update
» Typically used for write-back caches

— No-write-allocate: update without loading
» Typically used for write-through caches



I Cache architecture

 Example: Intel Core i7

e Per-core:
- Registers
— L1 d-cache and i-cache

e Data and instructions
— L2 unified cache

e Shared:

— L3 unified cache
- Main memory

----------------------
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I Performance impact

e Metrics

— Miss rate: # misses / # memory accesses

— Hit rate: 1 — miss rate

— Hit time: delay in accessing data for a cache hit

— Miss penalty: delay in loading data for a cache miss

- Read throughput (or "bandwidth"): the rate that a program reads
data from a memory system

e General observations:

— Larger cache = higher hit rate but higher hit time
— Lower miss rates = higher read throughput



 Working set size vs. throughput
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e Stride vs. throughput

Read throughput (MB/s)
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e Stride and WSS vs. read throughput
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(a) Version i jk

1
2
3
4
5
]
F

for (i = 0; i < n; i++)
for (j = Q; § < n; j#e) o
sum = 0.0;
for (k = 0; k < n; k+s)
sum += A[i] [k]+B[k][j];
Clil [j] += sum;

codedmenymarmalyimm.c

(c) Version jki

codedmeny/marmulymm.c

1
2
3
4
5
6

for (j = 0; j < m; jt)
for (k = 0; k < n; k++) {
r = BLk][j];
for (i = 0; i < n; i++)

Clil [j] += A[i) [k]#*r;

codedmentmatmdtmm.c

(e) Version kij

codednenmanltmm.e

i
2
3
4
5
[

for (k = 0; k < n; k++)
for (i = 0; i < n; i++) {
r = Ali] [k];
for (j = 0; j < n; j++)
Clil [j] += r+B[k][j];

code/memmatnialiimm.c

code/mentmatmultimm. e

(b) Version jik

codedmemymatmulemm.c

1 for (j = 0; j < m; j++)
2 for (i = 0; i < n; i++) {
3 sum = 0.0;
4 for (k = 0; k < n; k++)
5 sum += A[i] [k]*B[k] [j];
6 C[i]l[j] += sum;
7 }
code/mem/marmultimn.c
(d) Version kji
codelmemdmatmult/imm.c

for (k = 0; k < n; kt+)

1
2 for (j = 0; j < mn; j++) {
3 r = BLk]l[j];
4 for (1 = 0; i < n; i++)
5 Clil[j] += Al[i] [k]=*r;
[ }
code/memimatmud/imm.c
(f) Version ikj
code/menymatmult/mm.c

for (1L = 0; i < n; i++)

1

2 for (k = 0; k < n; k++) {

3 r = A[i] [k];

4 for (j = 0; j < n; j++)
5 Clil[j] += r*B[K][j1;
6 1

code/mem/manmultimm.c

Figure 6.44 Six versions of matrix multiply. Each version is uniquely identified by the ordering of its loops.



I Case study: matrix multiply
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I Optimization strategies

* Focus on the common cases

 Focus on the code regions that dominate runtime
 Focus on inner loops and minimize cache misses
e Favor repeated local accesses (temporal locality)
e Favor stride-1 access patterns (spatial locality)



e Virtual memory: an OS-level memory cache
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