

CS 261
Fall 2016

Mike Lam, Professor

Caching

Topics

● Locality

● Caching

● Performance impact

● General strategies

Locality

● Temporal locality: frequently-accessed items will
continue to be accessed in the future

– Theme: repetition is common

● Spatial locality: nearby addresses are more likely to
be accessed soon

– Theme: sequential access is common

● Why do we care?

– Programs with good locality run faster than programs with
poor locality

Data locality

● Temporal locality: keep often-used values in higher
tiers of the memory hierarchy

● Spatial locality: use predictable access patterns

– Stride-1 reference pattern (sequential access)

– Stride-k reference pattern (every k elements)

– Closely related to row-major vs. column-major

– Allows for prefetching (predicting the next needed
element and preloading it)

Instruction locality

● Normal execution exhibits spatial locality

– Instructions execute in sequence

– Control flow instructions inhibit locality

● Loops exhibit both temporal and spatial locality

– The body statements execute repeatedly (temporal
locality) and in sequence (spatial locality)

– Short loops are better

Caching

● A cache is a small, fast memory that acts as a buffer or
staging area for a larger, slower memory

– Fundamental CS system design concept

– Example: web browser cache

– Data is transferred between the cache and the slower
memory in blocks

– Slower caches use larger block sizes

– Cache hit vs. cache miss – did the cache have to transfer a
value from the lower level?

Cache misses

● Cache misses require blocks to be replaced or evicted

● Policies:

– Random replacement

– Least recently used

– Least frequently used

Cache misses

● A cache always begins cold (empty)

– Every request will be a miss initially

● As the cache loads data, it is warmed up

– This effect can cause performance measurement
variation during experiments if not controlled for

● A working set is a collection of elements needed
repeatedly for a particular computation

– If the working set doesn't fit in cache, this is called a
capacity miss

Cache writes

● How should we handle writes to a cached value?

– Write-through: immediately update to lower level
● Typically used for higher levels of memory hierarchy

– Write-back: defer update until eviction
● Typically used for lower levels of memory hierarchy

● How should we handle write misses?

– Write-allocate: load then update
● Typically used for write-back caches

– No-write-allocate: update without loading
● Typically used for write-through caches

Cache architecture

● Example: Intel Core i7

● Per-core:

– Registers

– L1 d-cache and i-cache
● Data and instructions

– L2 unified cache

● Shared:

– L3 unified cache

– Main memory

Performance impact

● Metrics

– Miss rate: # misses / # memory accesses

– Hit rate: 1 – miss rate

– Hit time: delay in accessing data for a cache hit

– Miss penalty: delay in loading data for a cache miss

– Read throughput (or "bandwidth"): the rate that a program reads
data from a memory system

● General observations:

– Larger cache = higher hit rate but higher hit time

– Lower miss rates = higher read throughput

Temporal locality

● Working set size vs. throughput

Spatial locality

● Stride vs. throughput

Memory mountain

● Stride and WSS vs. read throughput

Case study: matrix multiply

Case study: matrix multiply

Optimization strategies

● Focus on the common cases

● Focus on the code regions that dominate runtime

● Focus on inner loops and minimize cache misses

● Favor repeated local accesses (temporal locality)

● Favor stride-1 access patterns (spatial locality)

Next time

● Virtual memory: an OS-level memory cache

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

