

CS 261
Fall 2016

Mike Lam, Professor

CPU architecture

Topics

● CPU stages

● Y86 CPU design

● Pipelining

CPU stages

1) Fetch ←P3!

▪ Splits instruction at PC into pieces

2) Decode (register file)

▪ Reads registers

▪ P4: Sets valA

3) Execute (ALU)

▪ Arithmetic/logic operation, effective
address calculation, or stack pointer
increment/decrement

▪ P4: Sets valE and Cnd

4) Memory (RAM)

▪ Reads/writes memory

5) Write back (register file)

▪ Sets registers

6) PC update

▪ Sets new PC

CPU design

● SEQ: sequential Y86 CPU

– Runs one instruction at a time

– ssim: simulator

● Components:

– Clocked register (PC)

– Hardware units (blue boxes)
● Combinational/sequential circuits
● ALU, register file, memory

– Control logic (grey rectangles)
● Combinational circuits
● Details in textbook

– Wires (white circles)
● Word (thick lines)
● Byte (thin lines)
● Bit (dotted lines)

● Principle: no reading back

– Stages run simultaneously

– Effects remain internally consistent

Example

%rdx = 0x200 %rdx = 0x200

Example

%rdx = 0x200 %rdx = 0x200

System design

● CPU measurement

– Throughput: instructions executed per second
● GIPS: billions of (“giga-”) instructions per second
● 1 GIPS → each instruction takes 1 nanosecond (a billionth of a second)

– Latency / delay: time required per instruction
● Picosecond: 10-12 seconds Nanosecond: 10-9 seconds
● 1,000 ps = 1 nanosecond

– Relationship: throughput = # instructions / latency
● Example: 1 / 320ps * (1000ps/ns) = 0.003125 * 1000 ≈ 3.1 GIPS

System design

● Current CPU design is serial

– One instruction executes at a time

– Only way to improve is to run faster!

– Limited by speed of light

● One approach: make it smaller

– Shorter circuit = faster circuit

– Limited by manufacturing technology

What else could we do?

System design

?

● Idea: pipelined design

– Multiple instructions execute simultaneously (“instruction-level parallelism”)

– Similar to cafeteria line or car wash

– Split logic into stages and connect stages with clocked registers

– System design tradeoff: throughput vs. latency

System design

● Idea: pipelined design

– Multiple instructions execute simultaneously (“instruction-level parallelism”)

– Similar to cafeteria line or car wash

– Split logic into stages and connect stages with clocked registers

– System design tradeoff: throughput vs. latency

Pipelining example

Pipelining example

Pipelining

● Limitation: non-uniform partitioning

– Logic segments may have significantly different lengths

Pipelining

● Limitation: dependencies

– The effect of one instruction depends on the result of another

– Both data and control dependencies

– Sometimes referred to as hazards

Data dependency:

irmovq $8, %rax

addq %rax, %rbx

mrmovq 0x300(%rbx), %rdx

Control dependency:

loop:

subq %rdx, %rbx

jne loop

 irmovq $10, %rdx

Pipelining

Data dependency:

irmovq $8, %rax

addq %rax, %rbx

mrmovq 0x300(%rbx), %rdx

Control dependency:

loop:

subq %rdx, %rbx

jne loop

 irmovq $10, %rdx

● Limitation: dependencies

– The effect of one instruction depends on the result of another

– Both data and control dependencies

– Sometimes referred to as hazards

Pipelining

● Approaches to avoiding hazards

– Stalling: “hold back” an instruction temporarily

– Data forwarding: allow latter stages to feed into earlier
stages, bypassing memory or registers

– Hybrid: stall and forward

– Branch prediction: guess address of next instruction

– Halt execution (or throw an exception)

– For more info, read CS:APP section 4.5

Summary

● We’ve now learned how a CPU is constructed

– Transistors → logic gates → circuits → CPU

– Pipelining provides instruction-level parallelism

● This is not a CPU architecture class

– We won’t be closely studying the specifics of SEQ

– If you’re interested, the details are in section 4.3

– Same for PIPE (the pipelined version), in section 4.5

– If you’re REALLY interested, lobby for CS 456

CS 456: Architecture

● Course objectives:

– Describe the construction of a pipelined CPU from low-level components

– Describe hardware techniques for parallelism at various levels

– Summarize storage and I/O interfacing techniques

– Apply address decoding and memory hierarchy strategies

– Evaluate the performance impact of cache designs

– Implement custom hardware designs in an FPGA

– Justify the use of hardware-based optimization that fails occasionally

– Develop a sense for the challenges of hardware debugging

Lessons learned

● Computers are not human; they’re complex machines

– Machines require extremely precise inputs

– Machine output can be difficult to interpret

● Abstraction helps to manage complexity

– Use simpler components to build more complex ones

● System design involves tradeoffs

– Simpler ISA vs. ease of coding

– Throughput vs. latency

● The details matter (A LOT!)

– There are many ways to fail

– Skill and dedication are required to succeed

Next time: Y86 semantics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

