CS 261 Fall 2016

Mike Lam, Professor

Sequential Circuits

Circuits

- Circuits are formed by linking gates together
 - Inputs and outputs
 - Link output of one gate to input of another
 - Some gates have multiple inputs and/or outputs
 - Combinational circuits: outputs are a boolean function of inputs
 - Not time-dependent
 - Used for computation
 - Sequential circuits: output is dependent on previous inputs
 - Time-dependent
 - Used for memory

Circuit memory

• Question: How do we make a circuit "remember" something?

Circuit memory

- Question: How do we make a circuit "remember" something?
 - Answer: Create a feedback loop!
 - Creates a "storage" circuit, often called a latch
 - Instead of truth table, draw a timing diagram
 - Shows how input/output signals change with respect to time
 - Given input signals in diagram, we can determine output signals

SR AND-OR latch

S = "set" R = "reset"

SR NOR latch

Disallow S=1, R=1 because $Q' \neq !Q$

From "Code" book: S = "Save that bit!"

Signal changes

- Edge-triggered latches change Q on rising edge of "set" signal
- Master-slave latches change Q on falling edge of "set" signal

Master-slave D latch

Original D latch:

Clocks

- Provide oscillating signal
- Often used as "set" signal for latches
- Keep computation and memory in sync
- Clocked latches are called flip-flops

Flip-flop types

- SR: "set-reset"
- D: "data" bit + clock
- T: "toggle"
- JK: like SR + T (toggle when S=1, R=1)
 - J is S, K is R
- Any of these can be used to build the others
- Also can be built from basic logic gates in multiple ways

Registers

- **Registers**: arrays of flip-flops with a single set/clock input
- Connected by buses (groups of wires) to other components
- Edge triggering allows computation to stabilize before results are saved
- Caveat: difference between hardware registers and program registers
 - Former are physical, latter are logical (and stored in a register file)

Register files

- Register files: multiple registers w/ selector inputs
 - Use multiplexors to differentiate

Use multiplexors to read/write from the appropriate register using srcA, srcB, or dstW signals (set dstW to 0xF to read only)

Memory

- Memory: multiple flip-flops w/ address input
 - Random access memory (RAM) can access any address at any time
 - Use decoder (translates 3-bit number to 8 "set" signals) to write data
 - Use selector (multiplexor) to read data

Single RAM array

Shift registers

- Uses chained flip-flops to perform bit shifts
 - Left vs. right shift
 - Serial-in vs. parallel-in

Counters

- Uses rippled flip-flops w/ feedback to count
 - Similar to adders

