CS 261 Fall 2016

Mike Lam, Professor

Combinational Circuits

Quiz

• Match the gates with their truth tables and write the boolean function name

	0	1
Θ	0	Θ
1	0	1

Logic gates

• Primary gates:

Circuits

- Circuits are formed by linking gates together
 - Inputs and outputs
 - Link output of one gate to input of another
 - Some gates have multiple inputs and/or outputs
 - Combinational circuits: outputs are a boolean function of inputs
 - Not time-dependent
 - Used for computation
 - Sequential circuits: output is dependent on previous inputs
 - Time-dependent
 - Used for memory

a EQ b = (a & b) | (!a & !b) EQ(a, b) = OR(AND(a, b), AND(NOT(a), NOT(b)))

Multiplexor ("selector")

MUX (a, b, s) = (s & a) | (!s & b)

Abstraction

- Name circuits, then use them to build more complex circuits
 - E.g., use bit-level EQ to build a word-level equality circuit:

Word-level 2-way multiplexer

Half adders

А	В	S	С
0	Θ	?	?
0	1	?	?
1	Θ	?	?
1	1	?	?

Half Adder

Half adders

А	В	S	С
0	0	0	0
0	1	1	0
1	Θ	1	Θ
1	1	0	1

Half Adder

Half adders

A	В	S	С
Θ	0	0	0
Θ	1	1	0
1	0	1	0
1	1	0	1

Half Adder

Full adders

Full Adder

Connect full adders to build a ripple-carry adder that can handle multi-bit addition:

Adder/subtractor

In two's complement: B - A = B + !A + 1