CS 261 Fall 2016

Mike Lam, Professor

Combinational Circuits

Quiz

- Match the gates with their truth tables and write the boolean function name

Logic gates

- Primary gates:

NOT

NOR

Circuits

- Circuits are formed by linking gates together
- Inputs and outputs
- Link output of one gate to input of another
- Some gates have multiple inputs and/or outputs
- Combinational circuits: outputs are a boolean function of inputs
- Not time-dependent
- Used for computation
- Sequential circuits: output is dependent on previous inputs
- Time-dependent
- Used for memory

Equality

EQ(a, b) $=\operatorname{OR(AND(a,~b),~AND(NOT(a),~NOT(b)))~}$

Multiplexor ("selector")

Abstraction

- Name circuits, then use them to build more complex circuits
- E.g., use bit-level EQ to build a word-level equality circuit:
A). Bit-level implementation

Word-level 2-way multiplexer

A). Bit-level implementation

B). Word-level abstraction

Half adders

A	B	S
C		
0	0	$?$
0	1	$?$
1	0	$?$
1	1	$?$

Half Adder

Half adders

A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder

Half adders

A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder

Full adders

Connect full adders to build a ripple-carry adder that can handle multi-bit addition:

Adder/subtractor

In two's complement: B - A = B + ! A + $\mathbf{1}$

