

CS 261
Fall 2016

Mike Lam, Professor

x86-64 Misc Topics

Topics

● Pointer wrap-up

● Buffer overflows and mitigation

– Stack randomization

– Corruption detection

– Read-only code regions

● Floating-point code

● Conclusion

Pointers

● Every pointer has a type and a value

– Casting changes type but not value

● Pointer values are simply addresses in memory

– NOT the same as the pointer's address

● Pointers are created with '&' and dereferenced with '*'

– Declaration != creation!

– Addresses of variables aren't stored explicitly until a pointer is created

● Arrays and pointers are closely related in C

– Array variable = pointer to first element

● In assembly, indirect addressing modes are similar to pointers

– Register name vs. register value vs. indirect memory value

– Pointer name vs. pointer value vs. dereferenced value

GDB

● Learn it!

Buffer overflows

● Major C/x86-64 security issue

– C does not check for out-of-bounds array accesses

– x86-64 stores return addresses and data on the same stack

– Out-of-bound writes to local variables may overwrite other stack frames

– Allows attackers to change control flow just by providing the right "data"

– Many historical exploits (including Morris worm)

void echo ()
{
 char buf[8];
 gets(buf);
 printf(buf);
}

DO NOT
WRITE CODE
LIKE THIS!

higher
addresses

Buffer overflows

● Shellcode (exploit code)

– Pre-compiled snippets of code that exploit a buffer overflow

higher
addresses

char shellcode[] =
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

Complication: Must
pad the shellcode
with address of the
buffer (guess and/or
use a NOP-sled)

Mitigating buffer overflows

● Stack randomization

– Randomize starting location of stack

– Makes it more difficult to guess buffer address

– In Linux: address-space layout randomization

● Corruption detection

– Insert a canary (guard value) after each array

– Check canary before returning from function

● Read-only code regions

– Mark stack memory as "no-execute"

– Hinders just-in-time compilation and instrumentation

Floating-point code

● Single-Instruction, Multiple-Data (SIMD)

– Performs the same operation on multiple elements

– Also known as vector instructions

● Various floating-point SIMD instruction sets

– MMX, SSE, SSE2, SSE3, SSE4, SSE5, AVX, AVX2

– New extra-wide XMM (128-bit) or YMM (256-bit) registers for
holding multiple elements

● Floating-point arguments passed in %xmm0-%xmm7

● Return value in %xmm0

● All registers are caller-saved

– New instructions for movement and arithmetic

SSE/AVX

● Movement

– movss / movsd

– movaps / movapd

● Conversion

– cvtsi2ss / cvtsi2sd

– cvtss2si / cvtsd2si

– cvtss2sd / cvtsd2ss

● Arithmetic

– addss / addsd

– addps / addpd

– … (sub, mul, div,

– max, min, sqrt)

– andps / andpd

– xorps / xorpd

● Comparison

– ucomiss / ucomisd

(AVX has "v___" opcodes)

Bitwise operations in SSE/AVX

● Assembly instructions provide low-level access to
floating-point numbers

– Some numeric operations can be done more efficiently with
simple bitwise operations

● AKA: Stupid Floating-Point Hacks™

– Set to zero (value XOR value)

– Absolute value (value AND 0x7fffffff)

– Additive inverse (value XOR 0x80000000)

● Lesson: Information = Bits + Context
● (even if it wasn't the intended context!)

Projects 3 & 4: Y86-64 ISA

Projects 3 & 4: Support Utilities

● New folder on stu: /cs/students/cs261/f16/src/y86

– isa.pdf: Y86-64 reference sheet

– y86: compiled reference solution to P3/P4

– yas: Y86-64 assembler (.ys → .yo and .o)

– yis: Y86-64 simulator (takes .yo)

– ssim: CPU simulator (takes .yo)

– simple.ys: sample Y86-64 assembly program

● These will help with P3/P4: learn to use them!

– "yas <yourfile.ys>" to assemble code into object files

● Hint: make shortcuts in your working folder for easier access

– "ln -s /cs/students/cs261/f16/src/y86/yas yas"

– "ln -s /cs/students/cs261/f16/src/y86/y86 ref-y86"

report any
discrepancies!

Projects 3 & 4: Hints & Thoughts

● Work incrementally

– Gaps from C → B → A are much wider now

– Remember that the grade is not the goal of the project

– Start early enough to experiment and play

● Make your own examples to test with

– Ignore our test suite while developing

– Work until you think you've got the next grade, then test

● Remember the academic honesty policy

– Working in the same space and sharing ideas is encouraged

– Directly copying code is an honor code violation

– This includes file transfers and cell phone photos

Course status

● We're nearly halfway through the semester

– One exam, two projects, seven labs, ten quizzes

– Crucial point in the semester

● We've learned a lot but still have a lot ahead

– At this point you should have a good feel for how the
course is going to go for the remainder of the semester

– Keep in mind the withdrawal date is Oct 27

● I hope the course has been challenging but rewarding

– Let me know how we're doing!

Good luck!

"[Coding] is a journey, not a destination."

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

