

CS 261
Fall 2016

Mike Lam, Professor

x86-64 Data Structures

Topics

● Homogeneous data structures

– Arrays

– Nested / multidimensional arrays

● Heterogeneous data structures

– Structs / records

– Unions

Arrays

● An array is simply a block of memory

– Fixed-sized homogeneous elements

– Contiguous layout

– Known length (but not stored as part of the array!)

uint32_t stuff[3];

3 elements
each element is 4 bytes wide
total size is 3 * 4 = 12 bytes

stuff

stuff[2]

stuff[1]

stuff[0]

0x600108

0x600104

0x600100

 movq $0x600100, %rbx
 movq $3, %rsi
 xorq %rdi, %rdi

loop:
 movq $5, (%rbx, %rdi, 4)
 addq $1, %rdi
 cmpq %rsi, %rdi
 jl loop

for (int i = 0; i < 3; i++) {
 stuff[i] = 5;
}

Arrays and pointers

● Array name is essentially a pointer to first element (base)

– The ith element is at address (base + size * i)

● C pointer arithmetic uses intervals of the element width

– No need to explicitly multiply by size in C

– “stuff+0” or “stuff” is the address of the first element

– “stuff+1” is the address of the second element

– “stuff+2” is the address of the third element

● Indexing = pointer arithmetic plus dereferencing

– “stuff[i]” means “*(stuff + i)”

– In assembly, use the scaled index addressing mode
● (base, index, scale) → e.g., (%rbx, %rdi, 4) for 32-bit elements

Nested / multidimensional arrays

● Generalizes cleanly to multiple dimensions

– Think of the elements of outer dimensions as being arrays of inner dimensions

– “Row-major” order: outer dimension specified first

– E.g., “int16_t grid[4][3]” is a 4-element array of 3-element arrays of 16-bit integers

– 2D: Address of (i,j)th element is (base + size(cols * i + j))

– 3D: Address of (i,j,k)th element is (base + size((nd1 * nd2) * i + nd2 * j + k))

grid

grid[0]

grid[1]

grid[2]

grid[3]

grid[0][0]

grid[0][1]

grid[0][2]

0x600100

0x600106

0x60010c

0x600112

+2 +4 +6

grid

0x600100

0x600106

0x60010c

0x600112

Compiler optimizations

Structs

● C structs are also just regions of memory

– “Structured” heterogeneous regions--they’re split into fields

– Contiguous layout (w/ occasional gaps for alignment)

– Offset of each field can be determined by the compiler

– Sometimes called “records” generally

struct {
 int i;
 int j;
 int a[2];
 int *p;
} x;

 (%rbx = &x and %rdi = 1)

x.i = 1; movl $1, (%rbx)
x.j = 2; movl $2, 4(%rbx)
x.a[0] = 3; movl $3, 8(%rbx)
x.a[1] = 4; movl $4, 8(%rbx, %rdi, 4)
x.p = NULL; movq $0, 16(%rbx)

Union

● C unions are also just regions of memory

– Can store one “thing”, but it could be multiple sizes depending on what
kind of “thing” it currently is

– All “fields” start at offset zero

– Generally a bad idea! (circumvents the type system in C)

– Can be used to do OOP in C (i.e., polymorphism)

typedef enum { CHAR, INT, FLOAT } objtype_t;

typedef struct {
 objtype_t type;
 union {
 char c;
 int i;
 float f;
 } data;
} obj_t;

obj_t foo;

foo.type = INT;
foo.data.i = 65;

printf(“%c”, foo.data.c); ← VALID!

Alignment

● Alignment restrictions require addresses be n-divisible

– E.g., 4-byte alignment means all addresses must be divisible by 4

– Specified using an assembler directive

– Improves memory performance if the hardware matches

– Can be avoided in C using “attribute (packed)” (as in elf.h)

struct {
 int i;
 char c;
 int j;
} rec;

i c j

i c j

i c j

i c j

0 4 8 12 16 20 24

2-byte

4-byte

8-byte

None

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

