

CS 261
Fall 2016

Mike Lam, Professor

x86-64 Procedures

Topics

● Procedure calls

– Runtime stack

– Control transfer

– Data transfer

– Local storage

– Recursive procedures

Procedure calls

● Procedures are a key abstraction in software

– Provide modularity and encapsulation

– Many alternative names: functions, methods, subroutines, handlers

● Well-designed procedures have:

– Well-documented, strongly-typed input arguments

– Well-documented return value(s)

– Clear impact on program state (or no impact)

● Application Binary Interface (ABI)

– Interface between program & system components at the binary level

– Includes rules about how procedure calls are implemented

– These rules are referred to as calling conventions

– We will study the standard x86-64 calling conventions

Runtime stack

● Basic idea: keep a stack frame
on the system stack for each
function call

– All active functions have a frame

– Each frame stores information
about a single active call

● Arguments, local variables, return
address

– GDB's "backtrace" command
follows the chain up

– Recursion just works!

– Caution: security can be
compromised if a procedure writes
past the end of its stack frame

stack

Control transfer

● Use stack to store return addresses

– Return address: the instruction AFTER the call

– call pushes return address onto stack

– ret pops the return address and sets %rip

400550 <main>:
 ...
 400563 callq 400540 <foo>
 400568 mov 0x8(%rsp), %rdx
 ...

400550 <foo>:
 400540 push %rbx
 ...
 40054d retq

Data transfer

● Up to six integral (integer or pointer) arguments are passed via
registers in x86-64:
– %rdi, %rsi, %rdx, %rcx, %r8, %r9

– Other arguments are passed on the stack

● A single return value is passed back via %rax

● Some registers are designated callee-saved

– In x86-64: %rbx, %rbp, %r12, %r13, %r14, %r15

– A procedure must save/restore these registers (often using push/pop) if
they are used during the procedure

– Other registers except %rsp are caller-saved (caller must save them if
they need to be preserved)

Local storage

● Procedures can allocate space
on the stack for local variables

– Subtract # of bytes needed from
%rsp

● Variable-sized allocations require
special handling

– Use base pointer (%rbp) to track
“anchor” for current frame

– Save previous base pointer on
stack at beginning of function

– Section 3.10.5 in textbook

Base pointers

● Use base pointer (%rbp) to track the
beginning of current frame

– Parameters at positive offsets

– Local values at negative offsets

– Chain of base pointers up the stack

– Push/pop BP like return address

Prologue:
 pushq %rbp
 movq %rsp, %rbp
 subq $n, %rsp
 ...

Epilogue:
 movq %rbp, %rsp
 popq %rbp
 retq

Pre-call:
 pushq <param2>
 pushq <param1>
 callq <func>

Post-return:
 subq $16, %rsp
 ...

CALLER CALLEE

Exercise

● Trace the following code--what is the value of %rax at the end?

– Initial values: %rdi = 100, %rsp = 0x7fffe820

400540 <leaf>:
 400540 lea 0xf(%rdi), %rdi # rdi = rdi + 15
 400544 retq

400545 <top>:
 400545 sub $0x5, %rdi # rdi = rdi - 5
 400549 callq 400540 <leaf>
 40054e add %rdi, %rdi # rdi = rdi + rdi
 400551 retq

400550 <main>:
...
 40055b callq 400545 <top>
 400560 mov %rdi, %rax # rdx = rax
...

Aside: Y86-64 ISA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

