

CS 261
Fall 2016

Mike Lam, Professor

x86-64 Assembly

Topics

● Architecture/assembly intro

● Data formats

● Data movement

● Arithmetic and logical operations

von Neumann architecture

CPU

ALU
Register

File

Input
Device

Output
Device

Main Memory

PC

von Neumann architecture

CPU

ALU
Register

File

Input
Device

Output
Device

Main Memory

PC

1. Fetch

2. Decode

3. Execute

von Neumann architecture

CPU

ALU
Register

File

Input
Device

Output
Device

Main Memory

PC

1. Fetch

2. Decode

3. Execute

Cache

Assembly programming

● Assembly: simple, CPU-specific programming language

– However, x86-64 has become the industry standard

– Based on fetch/decode/execute execution loop

– Program is stored on disk along with data

– Low-level access to machine (memory, I/O, etc.)

– Each instruction = opcode and operands

– Compilers often target assembly code instead of machine
code for increased portability

– Understanding assembly code can help you optimize and
secure your programs

Assembly code operand types

● Immediate

– Operand embedded in instruction itself

– Written in assembly using “$” prefix (e.g., $42 or $0x1234)

● Register

– Operand stored in register file

– Accessed by register number

– Written in assembly using name and “%” prefix (e.g., %eax or %rsp)

● Memory

– Operand stored in main memory

– Accessed by effective address

– Written in assembly using a variety of addressing modes

Registers

● General-purpose

– AX: accumulator

– BX: base

– CX: counter

– DX: address

– SI: source index

– DI: dest index

● Special

– BP: base pointer

– SP: stack pointer

– IP: instruction pointer

– FLAGS: status info

Memory addressing modes

● Absolute: mov $1, x
– Moves to M[x]

● Indirect: mov $1, (r)
– Moves to M[R[r]]

● Base + displacement: mov $1, x(r)
– Moves to M[x + R[r]]

● Indexed: mov $1, x(rb, ri)
– Moves to M[x + R[rb] + R[ri]]

● Scaled indexed: mov $1, x(rb, ri, s)
– Moves to M[x + R[rb] + R[ri]∙s]

– Scale (s) must be 1, 2, 4, or 8

Exercise

● Given the following machine status, what is the value for the
following assembly operands?

– $42

– $0x10

– %rax

– 0x104

– (%rax)

– 4(%rax)

– 2(%rax, %rdx)

– (%rax, %rdx, 4)

 Memory
Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13

 Registers
Name Value
%rax 0x100
%rdx 0x2

Exercise

● Given the following machine status, what is the value for the
following assembly operands?

– $42 42

– $0x10 16

– %rax 0x100

– 0x104 0xAB

– (%rax) 0xFF

– 4(%rax) 0xAB

– 2(%rax, %rdx) 0xAB

– (%rax, %rdx, 4) 0x13

 Memory
Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13

 Registers
Name Value
%rax 0x100
%rdx 0x2

Brief aside: data formats

● Historical artifact: "word" in x86 is 16-bit

– 1 byte (8 bits) = "byte" (b)

– 2 bytes (16 bits) = "word" (w)

– 4 bytes (32 bits) = "double word" (l)

– 8 bytes (64 bits) = "quad word" (q)

Data movement

● Often, a “class” of instructions will perform similar
jobs, but on different sizes of data

● Primary data movement instruction: "mov"

– movb, movw, movl, movq, movabsq

● Zero-extension variant: "movz"

– movzbw, movzbl, movzwl, movzbq, movzwq

● Sign-extension variant: "movs"

– movsbw, movsbl, movswl, movsbq, movswq, movslq

Stack management

● Push/pop instructions: pushq and popq

– 8-byte (quadword) slots, growing “downward” from high addresses to
low addresses

● Register %rsp stores address of top of stack

– i.e., a pointer to the last value pushed

● pushq

– Subtract 8 from stack pointer

– Store value at new stack top location (%rsp)

● popq

– Retrieve value at current stack top (%rsp)

– Increment stack pointer by 8

Exercise

● Given the following register state, what will the values of the
registers be after the following instruction sequence?

– pushq %rax

– pushq %rcx

– pushq %rbx

– pushq %rdx

– popq %rax

– popq %rbx

– popq %rcx

– popq %rdx

 Registers
Name Value
%rax 0xAA
%rbx 0xBB
%rcx 0xCC
%rdx 0xDD

Exercise

● Given the following register state, what will the values of the
registers be after the following instruction sequence?

– pushq %rax

– pushq %rcx

– pushq %rbx

– pushq %rdx

– popq %rax %rax = 0xDD

– popq %rbx %rbx = 0xBB

– popq %rcx %rcx = 0xCC

– popq %rdx %rdx = 0xAA

 Registers
Name Value
%rax 0xAA
%rbx 0xBB
%rcx 0xCC
%rdx 0xDD

Arithmetic operations

Exercise

 Registers
Name Value
%rax 0x12
%rbx 0x56
%rcx 0x02
%rdx 0xF0

What are the values of all registers
after the following instructions?

addq %rax, %rax
subq %rax, %rbx
imulq %rcx, %rax
andq %rbx, %rdx
shrq $4, %rdx

Exercise

 Registers
Name Value
%rax 0x12
%rbx 0x56
%rcx 0x02
%rdx 0xF0

What are the values of all registers
after the following instructions?

addq %rax, %rax %rax:0x24
subq %rax, %rbx %rbx:0x32
imulq %rcx, %rax %rax:0x48
andq %rbx, %rdx %rdx:0x30
shrq $4, %rdx %rdx:0x03

%rax = 0x48
%rbx = 0x32
%rcx = 0x02
%rdx = 0x03

Exercise

What does the following instruction
do if %rax = 0x100?

leaq (%rax, %rax, 2), %rax

Exercise

What does the following instruction
do if %rax = 0x100?

leaq (%rax, %rax, 2), %rax

%rax = 0x300
(multiply by three)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

