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Topics

● Architecture/assembly intro

● Data formats

● Data movement

● Arithmetic and logical operations
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Assembly programming

● Assembly: simple, CPU-specific programming language

– However, x86-64 has become the industry standard

– Based on fetch/decode/execute execution loop

– Program is stored on disk along with data

– Low-level access to machine (memory, I/O, etc.)

– Each instruction = opcode and operands

– Compilers often target assembly code instead of machine
code for increased portability

– Understanding assembly code can help you optimize and
secure your programs



  

Assembly code operand types

● Immediate

– Operand embedded in instruction itself

– Written in assembly using “$” prefix (e.g., $42 or $0x1234)

● Register

– Operand stored in register file

– Accessed by register number

– Written in assembly using name and “%” prefix (e.g., %eax or %rsp)

● Memory

– Operand stored in main memory

– Accessed by effective address

– Written in assembly using a variety of addressing modes



  

Registers

● General-purpose

– AX: accumulator

– BX: base

– CX: counter

– DX: address

– SI: source index

– DI: dest index

● Special

– BP: base pointer

– SP: stack pointer

– IP: instruction pointer

– FLAGS: status info



  

Memory addressing modes

● Absolute: mov $1, x
– Moves to M[x]

● Indirect: mov $1, (r)
– Moves to M[R[r]]

● Base + displacement: mov $1, x(r)
– Moves to M[x + R[r]]

● Indexed:  mov $1, x(rb, ri)
– Moves to M[x + R[rb] + R[ri]]

● Scaled indexed: mov $1, x(rb, ri, s)
– Moves to M[x + R[rb] + R[ri]∙s]

– Scale (s) must be 1, 2, 4, or 8



  

Exercise

● Given the following machine status, what is the value for the
following assembly operands?

– $42

– $0x10

– %rax

– 0x104

– (%rax)

– 4(%rax)

– 2(%rax, %rdx)

– (%rax, %rdx, 4)

         Memory
Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13

    Registers
Name Value
%rax 0x100
%rdx 0x2



  

Exercise

● Given the following machine status, what is the value for the
following assembly operands?

– $42   42

– $0x10   16

– %rax   0x100

– 0x104   0xAB

– (%rax)   0xFF

– 4(%rax)   0xAB

– 2(%rax, %rdx)   0xAB

– (%rax, %rdx, 4)   0x13

         Memory
Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13

    Registers
Name Value
%rax 0x100
%rdx 0x2



  

Brief aside: data formats

● Historical artifact: "word" in x86 is 16-bit

– 1 byte (8 bits) = "byte" (b)

– 2 bytes (16 bits) = "word" (w)

– 4 bytes (32 bits) = "double word" (l)

– 8 bytes (64 bits) = "quad word" (q)



  

Data movement

● Often, a “class” of instructions will perform similar
jobs, but on different sizes of data

● Primary data movement instruction: "mov"

– movb, movw, movl, movq, movabsq

● Zero-extension variant: "movz"

– movzbw, movzbl, movzwl, movzbq, movzwq

● Sign-extension variant: "movs"

– movsbw, movsbl, movswl, movsbq, movswq, movslq



  

Stack management

● Push/pop instructions: pushq and popq

– 8-byte (quadword) slots, growing “downward” from high addresses to
low addresses

● Register %rsp stores address of top of stack

– i.e., a pointer to the last value pushed

● pushq

– Subtract 8 from stack pointer

– Store value at new stack top location (%rsp)

● popq

– Retrieve value at current stack top (%rsp)

– Increment stack pointer by 8



  

Exercise

● Given the following register state, what will the values of the
registers be after the following instruction sequence?

– pushq %rax

– pushq %rcx

– pushq %rbx

– pushq %rdx

– popq %rax

– popq %rbx

– popq %rcx

– popq %rdx

    Registers
Name Value
%rax 0xAA
%rbx 0xBB
%rcx 0xCC
%rdx 0xDD



  

Exercise

● Given the following register state, what will the values of the
registers be after the following instruction sequence?

– pushq %rax

– pushq %rcx

– pushq %rbx

– pushq %rdx

– popq %rax %rax = 0xDD

– popq %rbx %rbx = 0xBB

– popq %rcx %rcx = 0xCC

– popq %rdx %rdx = 0xAA

    Registers
Name Value
%rax 0xAA
%rbx 0xBB
%rcx 0xCC
%rdx 0xDD



  

Arithmetic operations



  

Exercise

       Registers
Name Value
%rax 0x12
%rbx 0x56
%rcx 0x02
%rdx 0xF0

What are the values of all registers
after the following instructions?

addq  %rax, %rax
subq  %rax, %rbx
imulq %rcx, %rax
andq  %rbx, %rdx
shrq  $4,   %rdx



  

Exercise

       Registers
Name Value
%rax 0x12
%rbx 0x56
%rcx 0x02
%rdx 0xF0

What are the values of all registers
after the following instructions?

addq  %rax, %rax  %rax:0x24
subq  %rax, %rbx  %rbx:0x32
imulq %rcx, %rax  %rax:0x48
andq  %rbx, %rdx  %rdx:0x30
shrq  $4,   %rdx  %rdx:0x03

%rax = 0x48
%rbx = 0x32
%rcx = 0x02
%rdx = 0x03



  

Exercise

What does the following instruction
do if %rax = 0x100?

leaq (%rax, %rax, 2), %rax



  

Exercise

What does the following instruction
do if %rax = 0x100?

leaq (%rax, %rax, 2), %rax

%rax = 0x300
(multiply by three)
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