

CS 261
Fall 2016

Mike Lam, Professor

Machine Code

Machine code

● We have studied multiple encodings of information
(i.e., data)

– Unsigned integers

– Two's complement integers

– ASCII / Unicode

– Floating-point numbers

● We’ll conclude by studying encodings of instructions
(i.e., code)

– Machine code

– Assembly code

– This will lead naturally to our next topic: CPU architectures

Instruction set architecture

● Every CPU has a set of instructions that it supports

– Each instruction has a corresponding opcode

– Most instructions also require parameters
● Register numbers, memory addresses, immediate values

● Every CPU also maintain state information

– Program counter: address of next instruction

– Register file: quick-access memory locations

– Condition and flag registers: status information

– Vector registers: multiple data values

RISC vs. CISC

● RISC: Reduced Instruction Set Computing

– Small, highly optimized set of instructions

– Often requires load/store instructions to access memory

– Often uses fixed-size instruction encoding

– Examples: MIPS, DEC, SPARC, Power, ARM

● CISC: Complex Instruction Set Computing

– Larger, more powerful set of instructions

– Many instructions perform multiple actions
● E.g., load-and-add or fused-multiply-and-add

– Usually requires variable-sized instruction encoding

– Examples: PDP-11, VAX, IA32, x86-64

Assembly code

● Machine code is made for machines

– Very tedious for humans to read

● Assembly code: human-readable encoding of machine code

– One instruction per line

– Mnemonic for each opcode (e.g., “add”, “jmp”, “halt”)

– Names for registers (e.g., “%eax”, “%rax”, “%rbp”)

– Hex encoding of addresses and immediate values

55 push %rbp
89 fa mov %edi,%edx
88 45 f8 mov %al,-0x8(%rbp)
01 d0 add %edx,%eax
5d pop %rbp
c3 retq

Examples

55 push %rbp

5d pop %rbp

c3 retq

From the AMD64 manual (vol 3):

Registers

● General-purpose

– AX: accumulator

– BX: base

– CX: counter

– DX: address

– SI: source index

– DI: dest index

● Special

– BP: base pointer

– SP: stack pointer

– IP: instruction pointer

– FLAGS: status info

Tools

● Assembler

– Converts assembly code into machine code

– On stu: “as” (usually run via “gcc” driver)

● Disassembler

– Extracts information and assembly code from machine code files

– On stu: “readelf” and “objdump”

● Debugger

– Step through the execution of machine code instructions

– On stu: “gdb”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

