CS 261 Fall 2016

Mike Lam, Professor

Floating-Point Numbers

Floating-point

- Topics
 - Binary fractions
 - Floating-point representation
 - Conversions and rounding error

Binary fractions

- Now we can store integers
 - But what about general real numbers?
- Extend binary integers to store fractions
 - Designate a certain number of bits for the fractional part
 - These bits represent negative powers of two
 - (Just like fractional digits in decimal fractions!)

4 + 1 + 0.5 + 0.125 = **5.625**

Examples

Representation	Value	Decimal
0.02	$\frac{0}{2}$	0.010
0.012	$\frac{1}{4}$	0.25_{10}
0.0102	$\frac{2}{8}$	0.25_{10}
0.00112	$\frac{3}{16}$	0.1875_{10}
0.001102	$\frac{6}{32}$	0.1875_{10}
0.0011012	$\frac{13}{64}$	0.203125_{10}
0.0011010 ₂	$\frac{26}{128}$	0.203125_{10}
0.00110011 ₂	$\frac{51}{256}$	0.19921875_{10}

Another problem

- For scientific applications, we want to be able to store a wide *range* of values
 - From the scale of galaxies down to the scale of atoms
- Doing this with fixed-precision numbers is difficult
 - Even signed 64-bit integers
 - Perhaps allocate half for whole number, half for fraction
 - Range: ~2 x 10⁻⁹ through ~2 x 10⁹

- Scientific notation to the rescue!
 - Traditionally, we write large (or small) numbers as $x \cdot 10^{e}$
 - This is how floating-point representations work
 - Store exponent and fractional parts (the significand) separately
 - The decimal point "floats" on the number line
 - Position of point is based on the exponent

$$1.23 = 1.23 \times 10^{\circ} = 0.123 \times 10^{\circ} = 0.0123 \times 10^{\circ} = ...$$
$$= 12.3 \times 10^{\circ} = 123.0 \times 10^{\circ} = ...$$

- However, computers use binary
 - So floating-point numbers use base 2 scientific notation $(x \cdot 2^e)$
- Fixed width field
 - Reserve one bit for the sign bit (0 is positive, 1 is negative)
 - Reserve n bits for biased exponent (bias is $2^{n-1} 1$)
 - Avoids having to use two's complement
 - Use remaining bits for normalized fraction (implicit leading 1)
 - Exception: if the exponent is zero, don't normalize

1. Normalized

|--|

2. Denormalized

s 0 0 0 0 0 0 0 0 f

3a. Infinity

3b. NaN

Figure 2.33 Categories of single-precision floating-point values. The value of the exponent determines whether the number is (1) normalized, (2) denormalized, or (3) a special value.

NaNs

- NaN = "Not a Number"
 - Result of 0/0 and other undefined operations
 - Propagate to later calculations
 - Quiet and signaling variants (qNaN and sNaN)
 - Allowed a neat trick during my dissertation research:

		Exponent		Fraction		Value			
Description	Bit representation	е	Ε	2^E	f	М	$2^E \times M$	V	Decimal
Zero	0 0000 000	0	-6	$\frac{1}{64}$	$\frac{0}{8}$	$\frac{0}{8}$	$\frac{0}{512}$	0	0.0
Smallest positive	0 0000 001	0	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{512}$	$\frac{1}{512}$	0.001953
aradualundarflau	0 0000 010	0	-6	$\frac{1}{64}$	$\frac{2}{8}$	$\frac{2}{8}$	$\frac{2}{512}$	$\frac{1}{256}$	0.003906
gradual undernow near zero	0 0000 011	0	-6	$\frac{1}{64}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{512}$	$\frac{3}{512}$	0.005859
	:								
Largest denormalized	0 0000 111	0	-6	$\frac{1}{64}$	$\frac{7}{8}$	$\frac{7}{8}$	$\frac{7}{512}$	$\frac{7}{512}$	0.013672
Smallest normalized	0 0001 000	1	-6	$\frac{1}{64}$	$\frac{0}{8}$	88	$\frac{8}{512}$	$\frac{1}{64}$	0.015625
	0 0001 001	1	-6	$\frac{1}{64}$	$\frac{1}{8}$	<u>9</u> 8	$\frac{9}{512}$	$\frac{9}{512}$	0.017578
values < 1	÷								
Values < 1	0 0110 110	6	-1	$\frac{1}{2}$	<u>6</u> 8	$\frac{14}{8}$	$\frac{14}{16}$	$\frac{7}{8}$	0.875
	0 0110 111	6	-1	$\frac{1}{2}$	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{15}{16}$	$\frac{15}{16}$	0.9375
One	0 0111 000	7	0	1	$\frac{0}{8}$	88	88	1	1.0
	0 0111 001	7	0	1	$\frac{1}{8}$	$\frac{9}{8}$	<u>9</u> 8	$\frac{9}{8}$	1.125
values > 1	0 0111 010	7	0	1	$\frac{2}{8}$	$\frac{10}{8}$	$\frac{10}{8}$	$\frac{5}{4}$	1.25
	÷					10.75	U.	4	
	0 1110 110	14	7	128	<u>6</u> 8	$\frac{14}{8}$	<u>1792</u>	224	224.0
Largest normalized	0 1110 111	14	7	128	$\frac{7}{8}$	$\frac{15}{8}$	<u>1920</u> 8	240	240.0
Infinity	0 1111 000	_	—		_	_		∞	_

Figure 2.35 Example nonnegative values for 8-bit floating-point format. There are k = 4 exponent bits and n = 3 fraction bits. The bias is 7.

(b) Values between -1.0 and +1.0

Figure 2.34 Representable values for 6-bit floating-point format. There are k = 3 exponent bits and n = 2 fraction bits. The bias is 3.

Not evenly spaced! (as integers are)

Floating-point

- Some numbers cannot be represented exactly, regardless of how many bits are used!
 - E.g., 0.1 (dec) → 0.00011001100110011001100 ...
- This is no different than in base 10

- E.g., 1/3 = 0.333333333 ...

Converting floating-point numbers

- Floating-point \rightarrow decimal:
 - 1) Sign bit: (value is "-1" if set, "1" if not)
 - 2) Exponent:

```
Note: bias = 2^{n-1} - 1
```

(where n is the # of exp bits)

- All zeroes: denormalized (exponent is 1-bias)
- All ones: NaN unless fraction is zero (which is infinity) DONE!
- Otherwise: normalized (exponent is e-bias)
- 3) Fraction:
 - If normalized: $1 + f/2^{-m}$ (where m is the # of fraction bits)
 - If denormalized: *f*/2^{-m} (where m is the # of fraction bits)
- Multiply sign x 2^{exp} x frac to get final value

Textbook's technique

- e: The value represented by considering the exponent field to be an unsigned integer
- E: The value of the exponent after biasing
- 2^E : The numeric weight of the exponent
- f: The value of the fraction
- M: The value of the significand
- $2^E \times M$: The (unreduced) fractional value of the number
- V: The reduced fractional value of the number
- Decimal: The decimal representation of the number

Converting floating-point numbers

- Decimal \rightarrow floating-point (normalized only)
 - Convert to fractional binary format
 - Normalize to 1.xxxxxx
 - Keep track of how many places you move the decimal and which direction
 - The "xxxxxx" bit string is the significand (pad with zeros or round if needed)
 - Encode resulting exponent
 - Add bias and convert to unsigned binary
 - If the exponent cannot be represented, result is zero or infinity

Example (4-bit exp, 3-bit frac): 2.75 (dec) \rightarrow 10.11 (bin) \rightarrow 1.011 x 2¹ (bin) \rightarrow 0 1000 011 Bias = 2⁴⁻¹ - 1 = 7 Exp: 1 + 7 = 8

Note: bias = 2^{n-1} -1 (where n is the

of exp bits)

Example (textbook pg. 119)

 $\begin{array}{l} 12345_{10} \rightarrow 11000000111001_{2} \\ \rightarrow 1.1000000111001_{2} \times 2^{13} \\ exp = 13 + 127 \mbox{ (bias)} = 140 = 10001100_{2} \\ \rightarrow 0 \mbox{ 10001100 \ 1000000111001000000000} \end{array}$

(note the shared bits that appear in all three representations)

Name		Bits	Ехр	Sig	Dec	M_Eps
IEEE	half	16	5	10+1	3.311	9.77e-04
IEEE	single	32	8	23+1	7.225	1.19e-07
IEEE	double	64	11	52+1	15.955	2.22e-16
IEEE	quad	128	15	112+1	34.016	1.93e-34

NOTES:

- Sig is <*explicit*>[+<*implicit*>] bits
- $Dec = log_{10}(2^{Sig})$
- M_Eps (machine epsilon) = $b^{(-(p-1))} = b^{(1-p)}$

Conversion and rounding

				10:			
		Int32	Int64	Floa	at C	Double	O = avarflow passible
	Int32	-	-	R	-		R = rounding possible
From:	Int64	0	-	R	F	2	
	Float	OR	OR	-	-		"-" IS Safe
	Double	OR	OR	OR	-		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Mode		\$1.40	\$1.60	\$1.50	\$2.50	\$-1.50	$10.01100 \rightarrow 10.10$
Round-to	o-even	\$1	\$2	\$2	\$2	\$-2	$10.11100 \rightarrow 11.00$
Round-toward-zero		\$1	\$1	\$1	\$2	\$-1	Round-to-even: round to nearest.
Round-down		\$1	\$1	\$1	\$2	\$-2	on ties favor even numbers to
Round-up		\$2	\$2	\$2	\$3	\$-1	avoid statistical biases

Figure 2.37 Illustration of rounding modes for dollar rounding. The first rounds to a nearest value, while the other three bound the result above or below.

Floating-point issues

- Rounding error
 - Can compound over successive operations
- Lack of associativity
 - Prevents some compiler optimizations
- Cancelation
 - Loss of significant digits can impact later operations

```
double b = -a;
                                         2.491264 (7)
                                                                1.613647
                                                                           (7)
double c = 3.14;
                                       - 2.491252 (7)
                                                             - 1.613647
                                                                           (7)
if (((a + b) + c) == (a + (b + c))) {
                                         0.000012 (2)
                                                               0.000000
                                                                           (0)
   printf ("Equal!\n");
} else {
   printf ("Not equal!\n");
                                       (5 digits cancelled)
                                                             (all digits cancelled)
}
```

Floating-point issues

- Single vs. double precision choice
 - Theme: system design involves tradeoffs
 - Single precision arithmetic is faster
 - Especially on GPUs
 - Double precision is more accurate
 - More than twice as accurate!
 - Which do we use?
 - And how do we justify our choice?
 - Does the answer change for different regions of a program?
 - Does the answer change for different periods during execution?
 - This is an open research question (talk to me if you're interested!)

- What are the values of the following numbers, interpreted as floating-point numbers with a 3-bit exponent and 2-bit significand?
 - What about a 2-bit exponent and a 3-bit significand?

001100 011001

• Convert the following values to a floating-point value with a 4-bit exponent and a 3-bit significand. Write your answers in hex.

$$-3$$
 0.125 120 ∞