Floating-Point Numbers

e Topics
— Binary fractions

- Floating-point representation
— Conversions and rounding error

I Binary fractions

 Now we can store integers
— But what about general real numbers?
 Extend binary integers to store fractions

— Designate a certain number of bits for the fractional part
— These bits represent negative powers of two
— (Just like fractional digits in decimal fractions!)

101.101

1/2 1/4 1/8

4 + 1 + 05 + 0125 — 5_625 (alternatively: 5 + 5/8)

Representation Value Decimal
0.0, § 0.0,

0.01, i 0.25¢0
0.010, % 0.25,0
0.0011, o 0.1875¢
0.00110, & 0.18754¢
0.001101, i 0.203125,,
0.0011010, 5 0.203125,,
0.00110011, = 0.19921875,,

I Another problem

e For scientific applications, we want to be able to store
a wide range of values

— From the scale of galaxies down to the scale of atoms
e Doing this with fixed-precision numbers is difficult

— Even signed 64-bit integers

e Perhaps allocate half for whole number, half for fraction
 Range: ~2 x 10 through ~2 x 109

I Floating-point numbers

e Scientific notation to the rescue!

— Traditionally, we write large (or small) numbers as x - 10e
— This Is how floating-point representations work

o Store exponent and fractional parts (the significand) separately
e The decimal point “floats” on the number line
e Position of point is based on the exponent

1.23 = 1.23x10° = 0.123 x 10* =0.0123 x 10?
1

2.3x10?* = 123.0x 107 =

I Floating-point numbers

 However, computers use binary
— So floating-point numbers use base 2 scientific notation (x - 2¢)
e Fixed width field

— Reserve one bit for the sign bit (O is positive, 1 is negative)

— Reserve n bits for biased exponent (bias is 2n1 - 1)
* Avoids having to use two’s complement

— Use remaining bits for normalized fraction (implicit leading 1)
» Exception: if the exponent is zero, don’t normalize

2.5 - 91000 Oil.O

Sign (+) f Significand: (1).01 = 2.5
Exponent (8 -7 =1)

I Floating-point numbers

1. Normalized

S # 0 and # 255 f

2. Denormalized
s|0{0{0|0]|0|0|0|0 f

3a. Infinity
s'_‘l____'1'_-:-1 11 1-_3-_'1 110{0/0/0|0({0/10|0({0(0|0|0O(0O|0|0]|]O(0O({0O|0O|0O|0O|0O|0O

3b. NaN
[20

Figure 2.33 Categories of single-precision floating-point values. The value of the
exponent determines whether the number is (1) normalized, (2) denormalized, or (3) a
special value.

 NaN = “Not a Number”

— Result of 0/0 and other undefined operations

— Propagate to later calculations

— Quiet and signaling variants (QNaN and sNaN)

— Allowed a neat trick during my dissertation research:
64 32 16 8 4 0

Double I_|_|-||T|_|T|_|T_-_- -_- -_-
downcast conversion

64 8 4 0

32 16
Repla e d NN N T (T[T T T o e P
x? F F aﬂfji D E A D

8 4 0

32 16
single W [[J1TT1IEHEEEE (EEOEERETD

Non-signalling NaN

Exponent Fraction Value
Description Bit representation e E 28 f M 2Exm V Decimal
Zero 0 0000 000 0o -6 & % 3 B 0 0.0
Smallest positive 0 0000 001 0 -6 & & & 15 - 0.001953
sl undert 0 0000 010 0 -6 & 3 3 <= - 0.003906
graauail unaeriiow 1 3 3 3 3
near zero 0 0000 011 o -6 & 3 3 5 s 0.005859
Largest denormalized 0 0000 111 0 -6 & i 3 — o 0.013672
Smallest normalized 0 0001 000 1 -6 & I 8 & - 0.015625
1 1 9 9 9
0 0001 001 1 -6 & & 3 = = 0.017578
values < 1
00110 110 6 -1 1 & 1 1 N 0.875
00110 111 6 -1 3 I B - i 0.9375
One 0 0111 000 7 0 1 9§ 8 2 1 1.0
00111 001 7 1 3 3 : 2 1.125
2 10 10 3
values > 1 0 011'1 010 7 0 1 § 3 T 3 1.25
01110 110 14 128 ¢ 2 1 24 249
Largest normalized 01110 111 14 7 128 - 1—%2—9 240 240.0
Infinity 01111 000 i R —— - - _

Figure 2.35 Example nonnegative values for 8-bit floating-point format.

and n = 3 fraction bits. The bias is 7.

There are k = 4 exponent bits

I Floating-point numbers

= - r e i i —d 4. £
—0 — 10 =0 0 +5 +10 + o0

+ Denormalized 4 Normalized o Infinity

(a) Complete range

-0 +0
T — Y - Y VR W W W W —- e\‘qa-'ie SN N W W VY — Y Y 4
-1 —-0.8 —0.6 —0.4 —-0.2 0 +0.2 +0.4 +0.6 +0.8 +1

¢+ Denormalized 4 Normalized @ Infinity

(b) Values between —1.0 and +1.0

Figure 2.34 Representable values for 6-bit floating-point format. There are k =3
exponent bits and n = 2 fraction bits. The bias is 3.

Not evenly spaced! (as integers are)

I Floating-point

e Some numbers cannot be represented exactly,
regardless of how many bits are used!

- E.g., 0.1 (dec) - 0.00011001100110011001100 ...
e This is no different than in base 10
- E.g., 1/3 =0.333333333 ...

I Converting floating-point numbers

e Floating-point - decimal: Note:
bias = 2" -1
~ 1) Sign bit: (value is “-1” if set, “1” if not) o e

of exp bits)

- 2) Exponent:
o All zeroes: denormalized (exponent is 1-bias)

o All ones: NaN unless fraction is zero (which is infinity) — DONE!
e Otherwise: normalized (exponent is e-bias)

— 3) Fraction:

e If normalized: 1 + f/2-m (where m is the # of fraction bits)
e If denormalized: f/2-m (where m is the # of fraction bits)

— Multiply sign x 2ex X frac to get final value

e: The value represented by considering the exponent field to be an unsigned
integer

E: The value of the exponent after biasing

2E: The numeric weight of the exponent

f: The value of the fraction

M: The value of the significand

2E x M: The (unreduced) fractional value of the number
V: The reduced fractional value of the number

Decimal: The decimal representation of the number

I Converting floating-point numbers

 Decimal - floating-point (normalized only)

Note:
: - bias = 2" -1
— Convert to fractional binary format as =
(where n is the
— Normalize to 1.XXXXXX # of exp bits)

» Keep track of how many places you move the decimal and which direction
e The “xxxxxx” bit string is the significand (pad with zeros or round if needed)

— Encode resulting exponent

e Add bias and convert to unsigned binary
 If the exponent cannot be represented, result is zero or infinity

Example (4-bit exp, 3-bit frac):

- -

2.75 (dec) - 10.11 (bin) - 1.011 x 2! (bin) — 0 1000 011

y

Bias=241-1=7 Exp:1+7=8

I Example (textbook pg. 119)

12345,, - 11000000111001,
~ 1.1000000111001, X 213

exp =13 + 127 (bias) = 140 = 10001100,

- 010001100 10000001110010000000000

(note the shared bits that appear in all three representations)

IEEE Floating-Point Numbers

Value is: (-1)*'8" x 1.frac x 2&*P

Sign (1 bit)
single [T | [T 10 AT PO AP
Exponent (8 bits) Fraction (23 bits)
Sign (1 bit)
oouble [[[[JL[T 1L AT T E A e D ER T ey
Exponent (11 bits) Fraction (52 bits)
Quad

Fraction (112 bits)

I Floating-point numbers

Name Bits EXp
IEEE half 16)
IEEE single 32 8
IEEE double 64 11
IEEE quad 128 15
NOTES:

- Sig is <explicit>[+<implicit>] bits
- Dec = log,,(2si9)
- M_Eps (machine epsilon) = b¢e-1) = ba-n

Sig
10+1
23+1
52+1

112+1

Dec
3.311
7.225
15.955
34.016

M_Eps
9.77e-04
1.19e-07
2.22e-16
1.93e-34

I Conversion and rounding

-

O = overflow possible

R = rounding possible

INnt32 -
From: Int64 O - R R . ;
“-”|s safe
Float OR OR - -
Double OR OR OR - 1000011
10.00100
10.00110
10.10100
Mode $1.40 $1.60 $1.50 $2.50 $-1.50 10.01100
Round-to-even $1 $2 $2 $2 §-2 s
Round-toward-zero $1 $1 §1 §2 $-1 Round-to-even: round to nearest,
Round-down $1 $1 $1 $2 $—2 on ties favor even numbers to
Round-up $2 $2 $2 $3 $—1 avoid statistical biases

Figure 2.37 lllustration of rounding modes for dollar rounding. The first rounds to
a nearest value, while the other three bound the result above or below.

Ll

!

—

10.
10.
10.
10.

10.
11.

00
00
01
10

10
00

I Floating-point issues

 Rounding error

— Can compound over successive operations
e Lack of associativity

— Prevents some compiler optimizations
e Cancelation

— Loss of significant digits can impact later operations

double a = 100000000000000000000.0;

double b = -a;

double c = 3.14; 2.491264 (7)

if (((a + b) +¢c) == (a+ (b +¢c))) { - 2.491252 (7)
printf ("Equal!\n"); 0.000012 (2)

} else {

intf ("Not 1'\n"); AL
} printf ("Not equal!\n") (5 digits cancelled)

1.613647 (7)

- 1.613647 (7)
0.000000 (0O)

(all digits cancelled)

I Floating-point issues

e Single vs. double precision choice

— Theme: system design involves tradeoffs

— Single precision arithmetic is faster
» Especially on GPUs
— Double precision is more accurate
e More than twice as accurate!
— Which do we use?
 And how do we justify our choice?
e Does the answer change for different regions of a program?

e Does the answer change for different periods during execution?
e This is an open research question (talk to me if you're interested!)

I Exercises

 What are the values of the following numbers, interpreted as
floating-point numbers with a 3-bit exponent and 2-bit
significand?

— What about a 2-bit exponent and a 3-bit significand?

001100 011001

e Convert the following values to a floating-point value with a 4-bit
exponent and a 3-bit significand. Write your answers in hex.

-3 0.125 120 00

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

