CS 261 Fall 2016

Mike Lam, Professor

Binary Arithmetic

Binary Arithmetic

- Topics
 - Basic addition
 - Overflow
 - Multiplication

Basic addition

- Binary and hex addition are fundamentally the same as decimal addition
 - Add digit-by-digit, using a carry as necessary
 - Result generally requires more bits than the two operands

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.

Basic addition

- Binary and hex addition are fundamentally the same as decimal addition
 - Add digit-by-digit, using a carry as necessary
 - Result generally requires more bits than the two operands

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.

Overflow

- Unsigned addition is subject to overflow
 - Caused by truncation to integer size

(assume a 16-bit integer)

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed modulo 16.

Overflow

- Two's complement addition
 - Works just like unsigned addition mechanically
 - Subject to both positive and negative overflow
 - Overflows if carry-in and carry-out differ for sign bit

x	у	x + y	$x + 4^{t} y$	Case
-8	-5	-13	3	1
[1000]	[1011]	[10011]	[0011]	
-8	-8	-16	0	1
[1000]	[1000]	[10000]	[0000]	
-8 [1000]	5 [0101]		-3 [1101]	2
2 [0010]	5 [0101]		7 [0111]	3
5	5	10	—6	4
[0101]	[0101]	[01010]	[1010]	

Figure 2.24

Relation between integer and two's-complement addition. When x + y is less than -2^{w-1} , there is a negative overflow. When it is greater than or equal to 2^{w-1} , there is a positive overflow.

Figure 2.25 Two's-complement addition examples. The bit-level representation of the 4-bit two's-complement sum can be obtained by performing binary addition of the operands and truncating the result to 4 bits.

Overflow

- Two's complement addition
 - Works just like unsigned addition mechanically
 - Subject to both positive and negative overflow
 - Overflows if carry-in and carry-out differ for sign bit

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a negative overflow when x + y < -8 and a positive overflow when $x + y \ge 8$.

Multiplication

Like addition, fundamentally the same as base 10

- Actually, it's even simpler!
- Same regardless of encoding

Mode	x		у		$x \cdot y$		Truncated $x \cdot y$	
Unsigned	5	[101]	3	[011]	15	[001111]	7	[111]
Two's complement	-3	[101]	3	[011]	-9	[110111]	-1	[111]
Unsigned	4	[100]	7	[111]	28	[011100]	4	[100]
Two's complement	-4	[100]	-1	[111]	4	[000100]	-4	[100]
Unsigned	3	[011]	3	[011]	9	[001001]	1	[001]
Two's complement	3	[011]	3	[011]	9	[001001]	1	[001]

Figure 2.27 Three-bit unsigned and two's-complement multiplication examples. Although the bit-level representations of the full products may differ, those of the truncated products are identical.

101 (5) x<u>11</u> (3) 101 <u>101</u>

1111 (15)

Multiplication

• Special case: multiply by powers of 2 (shift left)

$$2 << 1 = 4 (2 * 2) (1 * 2 * 2)$$

$$1 << 2 = 4 (1 * 2 * 2)$$

$$1 << 4 = 16 (1 * 2 * 2 * 2 * 2 * 2)$$

$$4 << 1 = 8 (4 * 2) (4 * 2)$$

$$4 << 2 = 16 (4 * 2 * 2)$$

Division

• General case is expensive!

- Special case: divide by powers of two (shift right)

k	>> k (binary)	Decimal	$12,340/2^{k}$
0	0011000000110100	12,340	12,340.0
1	<i>0</i> 001100000011010	6,170	6,170.0
4	0000001100000011	771	771.25
8	0000000000110000	48	48.203125

Figure 2.28 Dividing unsigned numbers by powers of 2. The examples illustrate how performing a <u>logical</u> right shift by k has the same effect as dividing by 2^{k} and then rounding toward zero.

k	>> k (binary)	Decimal	$-12,340/2^{k}$	
0	1100111111001100	-12,340	-12,340.0	
1	1110011111100110	-6,170	-6,170.0	Two's complement
4	<i>1111</i> 110011111100	-772	-771.25	
8	<i>11111111</i> 11001111	-49	-48.203125	

Figure 2.29 Applying arithmetic right shift. The examples illustrate that <u>arithmetic</u> right shift is similar to division by a power of 2, except that it rounds down rather than toward zero.

Division

- General case is expensive!
 - Special case: divide by powers of two (shift right)

k	Bias	-12,340 + bias (binary)	>> k (binary)	Decimal	$-12,340/2^{k}$
0	0	1100111111001100	1100111111001100	-12,340	-12,340.0
1	1	1100111111001101	1110011111100110	-6,170	-6,170.0
4	15	1100111111011011	<i>1111</i> 110011111101	-771	-771.25
8	255	1101000011001011	1111111111010000	-48	-48.203125

Figure 2.30 Dividing two's-complement numbers by powers of 2. By adding a bias before the right shift, the result is rounded toward zero.

Quiz

- What is 5 + 2?
- What is 4 3?
- What is 2 << 3?
- What is 3 << 3?
- What is 16 >> 2?

Show your work using two's complement in both hex and binary using 8-bit integers