Binary Arithmetic

e Topics
— Basic addition

— Qverflow
— Multiplication

* Binary and hex addition are fundamentally the same as
decimal addition

— Add digit-by-digit, using a carry as necessary
— Result generally requires more bits than the two operands

Dec Bin

12540 100111006
+_4683 +_1010110

be994f Hex
+ 7120

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits,

I Basic addition

* Binary and hex addition are fundamentally the same as
decimal addition

— Add digit-by-digit, using a carry as necessary
— Result generally requires more bits than the two operands

11 Dec 111 Bin
12540 10011100
+_46383 +_1010110
17223 11110010

1
bO994f Hex

+ 7120
bl10a6f

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits

e Unsigned addition is subject to overflow

— Caused by truncation to integer size

1
994f 7
+_ 7120 i
10a6f = 0a6f "
Truncation! j
(assume a 16-hit integer) o = ™
e o

12 14

Figure 2.23 Unsigned addition. With a 4-bit i ition i
g it word size, addition is performed

Overflow

 Two’s complement addition
— Works just like unsigned addition mechanically
— Subject to both positive and negative overflow
— Overflows if carry-in and carry-out differ for sign bit

= y x+y x+y Case Figur.e 2.24 X+y
= s 13 3 I Rel;:ttlon ’betweeln integer +2" T Bsithe susiow
and two’s-complemen
[1000] [1011] [10011] [0011] S as Case 4 i
-8 —8 —16 0 1 less than —2%~!, there is a 21 4 iz“"
[1000] [1000] [10000] [0000] negative overflow. When
g 2 o 5 it is gr?ater tha?n or ec!u_al Case 3
[1000] [o101] (1101} to 2¥~7, there is a positive 0 0
overflow.
2 5 2 3 Case 2
[0010] [0101] [0111] i =2
5 5 10 6 4 Case 1 e
[0101] [0101] [01010] [1010] _ow] Negative overflow

Figure _2.25 Two’s-complement addition examples. The bit-level representation of
the 4-bit two's-complement sum can be obtained by performing binary addition of the
operands and truncating the result to 4 bits.

 Two’s complement addition
— Works just like unsigned addition mechanically
— Subject to both positive and negative overflow
— Overflows if carry-in and carry-out differ for sign bit

8 B ¥R o v 2 & @

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a
negative overflow when & + v = -8 and a positive overflow when v + y = 8.

l Muttiplication

_ N 101 (5)
e Like addition, fundamentally the same as base 10 x_11 (3)
101
— Actually, it's even simpler! 101
— Same regardless of encoding tt (35)
Mode X y Xy Truncated x - y
Unsigned 2 [1oi] 3 [OL1) 15 [001111] 7 [111]
Two’s complement -3 [101] 3 "[011] -9 [110111] —1 [111]
Unsigned 4 [100] Ul 28 [011100] 4 100]
Two’s complement —4 [100] —1 [111] 4 [000100] —4 (100!
Unsigned 3 [011] 3 [011] 9 [001001] 1 [001]
Two’s complement 3 Joli] 3 [011] 9 [001001] 1 (001]

Figure 2.27 Three-bit unsigned and two’s-complement multiplication examples.
Although the bit-level representations of the full products may differ, those of the
truncated products are identical.

e Special case: multiply by powers of 2 (shift left)

2 << 1 =4 (2 * 2)

1 << 2 =4 (1 * 2 * 2)

1 << 4 = 16 (1 *2*2*2*2)
4 <<1=28 (4 * 2)

4 << 2 = 16 (4 * 2 * 2)

I Division

 General case is expensive!
- Special case: divide by powers of two (shift right)

k >> k (binary) Decimal 12,340/2%

0 0011000000110100 12,340 12,340.0

1 0001100000011010 6,170 6,170.0

4 0000001100000011 771 71125

8 0000000000110000 48 48.203125

Figure 2.28 Dividing unsigned numbers by powers of 2. The examples illustrate
how performing a logical right shift by k has the same effect as dividing by 2¥ and then

rounding toward zero.

k >> k (binary) Decimal —12,340/2%

0 1100111111001100 —12340 —12,340.0

1 1110011111100110 —6,170 —6,170.0 Two’s complement
4 1111110011111100 —T72 —771.25

8§ 1111111111001111 —49 —48.203125

Figure 2.29 Applying arithmetic right shift. The examples illustrate that arithmetic
right shift is similar to division by a power of 2, except that it rounds down rather than
toward zero.

 General case is expensive!
— Special case: divide by powers of two (shift right)

k Bias —12,340 + bias (binary) >> k (binary) Decimal —12,340/2k
0 0 1100111111001100 1100111111001100 -12,340 —12,340.0

1 1 1100111111001101 1110011111100110 —6,170 —6,170.0

4 15 1100111111011011 1111110011111101 =771 —771.25

8 255 1101000011001011 1111111111010000 —48 —48.203125

Figure 2.30 Dividing two’s-complement numbers by powers of 2.
before the right shift, the result is rounded toward zero.

By adding a bias

natis 5 + 27?
nat is 4 — 3?
nat Is 2 << 37
nat Is 3 << 37
nat is 16 >> 2?

S ===

Show your work using two’s complement in
both hex and binary using 8-bit integers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

