CS 261 Fall 2016

Mike Lam, Professor

Binary Arithmetic

Binary Arithmetic

- Topics
- Basic addition
- Overflow
- Multiplication

Basic addition

- Binary and hex addition are fundamentally the same as decimal addition
- Add digit-by-digit, using a carry as necessary
- Result generally requires more bits than the two operands

Basic addition

- Binary and hex addition are fundamentally the same as decimal addition
- Add digit-by-digit, using a carry as necessary
- Result generally requires more bits than the two operands

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.

- Unsigned addition is subject to overflow
- Caused by truncation to integer size

(assume a 16-bit integer)

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed
modulo 16.

Overflow

- Two's complement addition
- Works just like unsigned addition mechanically
- Subject to both positive and negative overflow
- Overflows if carry-in and carry-out differ for sign bit

x	y	$x+y$	$x+_{4}^{\mathrm{t}} y$	Case
-8	-5	-13	3	1
$[1000]$	$[1011]$	$[10011]$	$[0011]$	
-8	-8	-16	0	1
$[1000]$	$[1000]$	$[10000]$	$[0000]$	
-8	5		-3	2
$[1000]$	$[0101]$		$[1101]$	
2	5		7	3
$[0010]$	$[0101]$		$[0111]$	
5	5	10	-6	4
$[0101]$	$[0101]$	$[01010]$	$[1010]$	

Figure 2.24
Relation between integer and two's-complement addition. When $x+y$ is less than -2^{w-1}, there is a negative overflow. When it is greater than or equal to 2^{w-1}, there is a positive overflow.

Figure 2.25 Two's-complement addition examples. The bit-level representation of the 4-bit two's-complement sum can be obtained by performing binary addition of the operands and truncating the result to 4 bits.

Overflow

- Two's complement addition
- Works just like unsigned addition mechanically
- Subject to both positive and negative overflow
- Overflows if carry-in and carry-out differ for sign bit

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a negative overflow when $x+y<-8$ and a positive overflow when $x+y \geq 8$.

Multiplication

- Like addition, fundamentally the same as base 10
- Actually, it's even simpler!
- Same regardless of encoding

Mode	x		y		$x \cdot y$		Truncated $x \cdot y$	
Unsigned	5	[101]	3	[011]	15	[001111]	7	[111]
Two's complement	-3	[101]	3	[011]	-9	[110111]	-1	[111]
Unsigned	4	[100]	7	[111]	28	[011100]	4	[100]
Two's complement	-4	[100]	-1	[111]	4	[000100]	-4	[100]
Unsigned	3	[011]	3	[011]	9	[001001]	1	[001]
Two's complement	3	[011]	3	[011]	9	[001001]	1	[001]

Figure 2.27 Three-bit unsigned and two's-complement multiplication examples. Although the bit-level representations of the full products may differ, those of the truncated products are identical.

Multiplication

- Special case: multiply by powers of 2 (shift left)

$2 \ll 1=4$	$(2 * 2)$	
$1 \ll 2=4$	$(1 * 2 * 2)$	
$1<4=16$	$(1 * 2 * 2 * 2 * 2)$	
$4 \ll 1=8$	$(4 * 2)$	
$4<2=16$	$(4 * 2 * 2)$	

- General case is expensive!

- Special case: divide by powers of two (shift right)

k	$\gg \mathrm{k}$ (binary)	Decimal	$12,340 / 2^{\mathrm{k}}$
0	0011000000110100	12,340	$12,340.0$
1	0001100000011010	6,170	$6,170.0$
4	0000001100000011	771	771.25
8	0000000000110000	48	48.203125

Figure 2.28 Dividing unsigned numbers by powers of 2. The examples illustrate how performing a logical right shift by k has the same effect as dividing by 2^{k} and then rounding toward zero.

k	$\gg \mathrm{k}$ (binary)	Decimal	$-12,340 / 2^{\mathrm{k}}$	
0	1100111111001100	$-12,340$	$-12,340.0$	
1	1110011111100110	$-6,170$	$-6,170.0$	
4	1111110011111100	-772	-771.25	Two's complement
8	1111111111001111	-49	-48.203125	

Figure 2.29 Applying arithmetic right shift. The examples illustrate that arithmetic right shift is similar to division by a power of 2, except that it rounds down rather than toward zero.

Division

- General case is expensive!
- Special case: divide by powers of two (shift right)

k	Bias	$-12,340+$ bias (binary)	$\gg \mathrm{k}$ (binary)	Decimal	$-12,340 / 2^{\mathrm{k}}$
0	0	1100111111001100	1100111111001100	$-12,340$	$-12,340.0$
1	1	1100111111001101	1110011111100110	$-6,170$	$-6,170.0$
4	15	1100111111011011	1111110011111101	-771	-771.25
8	255	1101000011001011	1111111111010000	-48	-48.203125

Figure 2.30 Dividing two's-complement numbers by powers of 2. By adding a bias before the right shift, the result is rounded toward zero.

Quiz

- What is $5+2$?
-What is $4-3$?
-What is $2 \ll 3$?
-What is $3 \ll 3$?
-What is $16 \gg 2$?

Show your work using two's complement in both hex and binary using 8-bit integers

