CS 261 Fall 2016

Mike Lam, Professor

Integer Encodings

Integers

- Topics
 - C integer data types
 - Unsigned encoding
 - Two's-complement encoding
 - Conversions
 - Alternative encodings

Integer data types in C99

C data type	Minimum	Maximum	
[signed] char	-127	127	1 byt
unsigned char	0	255	
short	-32,767	32,767	2 byte
unsigned short	0	65,535	
int	-32,767	32,767	2 byte
unsigned	0	65,535	
long	-2,147,483,647	2,147,483,647	4 byte
unsigned long	0	4,294,967,295	
int32_t	-2,147,483,648	2,147,483,647	4 byte
uint32_t	0	4,294,967,295	
int64_t	-9,223,372,036,854,775,808	9,223,372,036,854,775,807	8 bytes
uint64_t	0	18,446,744,073,709,551,615	

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require that the data types have at least these ranges of values.

Integer data types on stu

All sizes in bytes

- int8_t 1 uint8_t 1
- int16_t 2
- uint16_t 2
 - int32_t 4
- uint32_t 4
 - int64_t 8
- uint64_t 8

- char 1
- unsigned char 1
 - short 2
- unsigned short 2
 - int 4
 - unsigned int 4
 - long 8
 - unsigned long 8
 - long long 8
- unsigned long long 8

Unsigned encoding

- Bit i represents the value 2ⁱ
 - Bits typically written from most to least significant (i.e., 2³ 2² 2¹ 2⁰)
 - This is the same encoding we saw on Wednesday!

1 =	$1 = 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = [0001]$
5 = 4	+ $1 = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = [0101]$
11 = 8 +	$2 + 1 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = [1011]$
15 = 8 + 4 +	$2 + 1 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = [1111]$

Binary to decimal:

Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:

Find highest power of two and subtract to find the remainder Repeat above until the remainder is zero Every power of two that was used becomes a 1; all other bits are 0

Unsigned encoding

- Textbook's notation
 - Each bar represents a bit
 - Add together bars to represent the contributions of each bit value to the overall value

Figure 2.12 Unsigned number examples for w = 4. When bit *i* in the binary representation has value 1, it contributes 2^i to the value.

Two's complement encoding

- Value of most significant bit is negated
 - Essentially, this makes half of all representable values negative

Conversions

- Smaller unsigned \rightarrow larger unsigned $0101 (5) \rightarrow 0000 0101 (5)$
 - Safe; zero-extend to preserve value
- Smaller two's comp. \rightarrow larger two's comp.
 - Safe; sign-extend to preserve value
- Larger \rightarrow smaller (unsigned or two's comp.)
 - Overflow if new type isn't large enough to fit (otherwise, truncate)
- Unsigned \rightarrow two's comp.
 - Overflow if first bit is non-zero (otherwise, no change)
- Two's comp. → unsigned - Overflow if value is negative (otherwise, no change)

- $1101 (-3) \rightarrow 1111 1101 (-3)$
- 0000 0101 (5) \rightarrow 0101 (5) $0011 \ 0101 \ (53) \rightarrow 0101 \ (5)$

 $0101 (5) \rightarrow 0101 (5)$ $1101 (13) \rightarrow 1101 (-2)$

 $0101(5) \rightarrow 0101(5)$ **1**101 (-2) \rightarrow **1**101 (13)

Two's complement encoding

- Taking the two's complement is equivalent to subtracting the number from 2^N, where N is the number of bits in the integer
- Advantage: can use arithmetic as usual
 - Ex: 5 3 = 5 + (-3) = 0101 + 1101 = 0010 (2)
 - Ex: 1 3 = 1 + (-3) = 0001 + 1101 = 1110 (-2)
 - Ex: -2 3 = (-2) + (-3) = 1110 + 1101 = 1011 (-5)

Other encodings

- Sign magnitude
 - Interpret most-significant bit as a sign bit
 - Interpret remaining bits as a normal unsigned int
 - Disadvantages:
 - Two zeros: -0 and +0 [1000 and 0000]
 - Less useful for arithmetic

Other encodings

- Ones' complement
 - Invert all the bits for negative numbers
 - Less useful for arithmetic than two's complement
 - However, it enables a neat trick: to perform two's complement, just do one's complement then add one

Ex: 5 = 0101 \rightarrow (one's comp.) \rightarrow 1010 \rightarrow (add one) \rightarrow 1011 = -5 (-8 + 2 + 1)

Aside: Why does this work? The sum of a number and it's ones' complement is all ones (or $2^{N}-1$ where N is the number of bits). Because taking the two's complement of x is equivalent to subtracting x from 2^{N} , the results are equal:

 $2^{N}-1 - x + 1 = 2^{N}-x$