CS 261 Fall 2016

Mike Lam, Professor

Integer Encodings

Integers

- Topics
- C integer data types
- Unsigned encoding
- Two's-complement encoding
- Conversions
- Alternative encodings

Integer data types in C99

C data type	Minimum	Maximum	
[signed] char	-127	127	1 byte
unsigned char	0	255	
short	$-32,767$	32,767	2 bytes
unsigned short	0	65,535	
int	$-32,767$	32,767	2 bytes
unsigned	0	65,535	
long	$-2,147,483,647$	$2,147,483,647$	4 bytes
unsigned long	0	$4,294,967,295$	
int32_t	$-2,147,483,648$	$2,147,483,647$	4 bytes
uint32_t	0	$4,294,967,295$	
int64_t	$-9,223,372,036,854,775,808$	$9,223,372,036,854,775,807$	8 bytes
uint64_t	0	$18,446,744,073,709,551,615$	

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require that the data types have at least these ranges of values.

Integer data types on stu

All sizes in bytes

unsigned $\begin{array}{r}\text { char } 1 \\ \text { char } 1\end{array}$	$\begin{array}{rr} \text { int8_t } & 1 \\ \text { uint8_t } & 1 \end{array}$
short 2	
unsigned short 2	$\begin{aligned} \text { int16_t } & 2 \\ \text { uint16_t } & 2 \end{aligned}$
int 4	
unsigned int 4	$\begin{array}{rr} \text { int } 32 _t & 4 \\ \text { uint32_t } & 4 \end{array}$
long 8	
unsigned long 8	int64_t 8
long long 8	uint64_t 8
unsigned long long 8	

Unsigned encoding

- Bit i represents the value 2^{i}
- Bits typically written from most to least significant (i.e., $2^{2} 2^{2} 2^{1} 2^{0}$)
- This is the same encoding we saw on Wednesday!

$$
\begin{array}{llrl}
1 & & 1 & =0 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[0001] \\
5 & = & 4 & \mathbf{1}=0 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[0101] \\
11 & =\mathbf{8}+ & 2+\mathbf{1}=\mathbf{1} \cdot 2^{3}+0 \cdot 2^{2}+\mathbf{1} \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[\mathbf{1 0 1 1}] \\
15 & =\mathbf{8}+4+2+\mathbf{1}=\mathbf{1} \cdot 2^{3}+1 \cdot 2^{2}+\mathbf{1} \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[\mathbf{1 1 1 1}]
\end{array}
$$

Binary to decimal:

Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:

Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero
Every power of two that was used becomes a 1; all other bits are 0

Unsigned encoding

- Textbook's notation
- Each bar represents a bit
- Add together bars to represent the contributions of each bit value to the overall value

Figure 2.12
Unsigned number examples for $w=4$.
When bit i in the binary representation has value 1 , it contributes 2^{i} to the value.

Two's complement encoding

- Value of most significant bit is negated

- Essentially, this makes half of all representable values negative

Figure 2.16
Comparing unsigned and two's-complement representations for $w=4$. The weight of the most significant bit is -8 for two's complement and +8 for unsigned, yielding a net difference of 16 .

Figure 2.17
Conversion from two's complement to unsigned. Function $T 2 U$ converts negative numbers to large positive numbers.

Conversions

- Smaller unsigned \rightarrow larger unsigned

$$
0101(5) \rightarrow 00000101 \text { (5) }
$$

- Safe; zero-extend to preserve value
- Smaller two's comp. \rightarrow larger two's comp.
$1101(-3) \rightarrow 11111101(-3)$
- Safe; sign-extend to preserve value
- Larger \rightarrow smaller (unsigned or two's comp.)

00000101 (5) $\rightarrow 0101$ (5) 00110101 (53) $\rightarrow 0101$ (5)

- Overflow if new type isn't large enough to fit (otherwise, truncate)
- Unsigned \rightarrow two's comp.

```
0101 (5) -> 0101 (5)
1101 (13) -> 1101 (-2)
```

- Two's comp. \rightarrow unsigned

```
0101 (5) -> 0101 (5)
```

- Overflow if value is negative (otherwise, no change)

Two's complement encoding

- Taking the two's complement is equivalent to subtracting the number from 2^{N}, where N is the number of bits in the integer
- Advantage: can use arithmetic as usual

$$
\begin{aligned}
& -E x: 5-3=5+(-3)=0101+1101=0010(2) \\
& -E x: 1-3=1+(-3)=0001+1101=1110(-2) \\
& -E x:-2-3=(-2)+(-3)=1110+1101=1011(-5)
\end{aligned}
$$

Other encodings

- Sign magnitude
- Interpret most-significant bit as a sign bit
- Interpret remaining bits as a normal unsigned int
- Disadvantages:
- Two zeros: -0 and +0 [1000 and 0000]
- Less useful for arithmetic

Other encodings

- Ones' complement
- Invert all the bits for negative numbers
- Less useful for arithmetic than two's complement
- However, it enables a neat trick: to perform two's complement, just do one's complement then add one

Ex: $5=0101 \rightarrow$ (one's comp.) $\rightarrow 1010 \rightarrow$ (add one) $\rightarrow 1011=-5(-8+2+1)$

Aside: Why does this work? The sum of a number and it's ones' complement is all ones (or $2^{\mathrm{N}}-1$ where N is the number of bits). Because taking the two's complement of x is equivalent to subtracting x from 2^{N}, the results are equal:
$2^{N}-1-x+1=2^{N}-x$

