

CS 261
Fall 2016

Mike Lam, Professor

Integer Encodings

Integers

● Topics
– C integer data types

– Unsigned encoding

– Two’s-complement encoding

– Conversions

– Alternative encodings

Integer data types in C99

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

8 bytes

Integer data types on stu

 char 1
 unsigned char 1

 short 2
 unsigned short 2

 int 4
 unsigned int 4

 long 8
 unsigned long 8
 long long 8
 unsigned long long 8

 int8_t 1
 uint8_t 1

 int16_t 2
 uint16_t 2

 int32_t 4
 uint32_t 4

 int64_t 8
 uint64_t 8

All sizes in bytes

Unsigned encoding

● Bit i represents the value 2i

– Bits typically written from most to least significant (i.e., 23 22 21 20)

– This is the same encoding we saw on Wednesday!

1 = 1 = 0∙23 + 0∙22 + 0∙21 + 1∙20 = [0001]

5 = 4 + 1 = 0∙23 + 1∙22 + 0∙21 + 1∙20 = [0101]

11 = 8 + 2 + 1 = 1∙23 + 0∙22 + 1∙21 + 1∙20 = [1011]

15 = 8 + 4 + 2 + 1 = 1∙23 + 1∙22 + 1∙21 + 1∙20 = [1111]

Binary to decimal:
Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:
Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero
Every power of two that was used becomes a 1; all other bits are 0

Unsigned encoding

● Textbook’s notation
– Each bar represents a bit

– Add together bars to represent the contributions of each
bit value to the overall value

Two’s complement encoding

● Value of most significant bit is negated
– Essentially, this makes half of all representable values negative

negative numbers

Conversions

● Smaller unsigned → larger unsigned
– Safe; zero-extend to preserve value

● Smaller two’s comp. → larger two’s comp.
– Safe; sign-extend to preserve value

● Larger → smaller (unsigned or two’s comp.)
– Overflow if new type isn’t large enough to fit (otherwise, truncate)

● Unsigned → two’s comp.
– Overflow if first bit is non-zero (otherwise, no change)

● Two’s comp. → unsigned
– Overflow if value is negative (otherwise, no change)

0101 (5) → 0000 0101 (5)

1101 (-3) → 1111 1101 (-3)

0000 0101 (5) → 0101 (5)
0011 0101 (53) → 0101 (5)

0101 (5) → 0101 (5)
1101 (13) → 1101 (-2)

0101 (5) → 0101 (5)
1101 (-2) → 1101 (13)

Two’s complement encoding

● Taking the two’s complement is equivalent to
subtracting the number from 2N, where N is the
number of bits in the integer

● Advantage: can use arithmetic as usual
– Ex: 5 – 3 = 5 + (-3) = 0101 + 1101 = 0010 (2)

– Ex: 1 – 3 = 1 + (-3) = 0001 + 1101 = 1110 (-2)

– Ex: -2 – 3 = (-2) + (-3) = 1110 + 1101 = 1011 (-5)

Other encodings

● Sign magnitude
– Interpret most-significant bit as a sign bit

– Interpret remaining bits as a normal unsigned int

– Disadvantages:
● Two zeros: -0 and +0 [1000 and 0000]
● Less useful for arithmetic

Other encodings

● Ones’ complement
– Invert all the bits for negative numbers
– Less useful for arithmetic than two’s complement

– However, it enables a neat trick: to perform two’s
complement, just do one’s complement then add one

Ex: 5 = 0101 → (one’s comp.) → 1010 → (add one) → 1011 = -5 (-8 + 2 + 1)

Aside: Why does this work? The sum of a number and it’s ones’ complement is all ones
(or 2N-1 where N is the number of bits). Because taking the two’s complement of x is
equivalent to subtracting x from 2N, the results are equal:

2N-1 - x + 1 = 2N-x

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

