Integer Encodings



* Topics
- C integer data types
- Unsignhed encoding
- Two’s-complement encoding
- Conversions
- Alternative encodings



I Integer data types in C99

C data type Minimum Maximum
|signed] char —127 127
unsigned char 0 255
short —32,767 32,767
unsigned short 0 65,535
int —32,767 32,767
unsigned 0 65,535
long —2,147,483,647 2,147,483,647
unsigned long 0 4,294,967,295
int32_t —2,147,483,648 2,147,483,647
uint32_t 0 4,294,967,295
int64_t —9,223,372,036,854,775,808 9,223,372,036,854,775,807
uint64_t 0 18,446,744,073,709,551,615

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

8 bytes

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require
that the data types have at least these ranges of values.



I Integer data types on stu

char

unsigned char
short

unsigned short
int

unsigned int
long

unsigned long
long long

unsigned long long

All sizes in bytes

N DN el

>~ b

00 00O 00 O

int8_t
uint8_t

intl6e t
uintle t

int32 t
uint32 t

int64_t
uinte4 t



I Unsigned encoding

 Bit i represents the value 2i

- Bits typically written from most to least significant (i.e., 23 22 21 20)
- This Is the same encoding we saw on Wednesday!

1 = 1= -1-2°=1[0001]
5 = +1= 2% + -1-2°=1[0101]
11=8+ 2+1=12°+ - 1-2'+1-2°=[1011]

15=8+4+2+1=1-22+1-22+1-21 + 1-:2°=[1111]

Binary to decimal:
Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:

Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero

Every power of two that was used becomes a 1, all other bits are 0



I Unsigned encoding

 Textbook’s notation

- Each bar represents a bit

- Add together bars to represent the contributions of each
bit value to the overall value

Figure 2.12 oi_g

Unsigned number B _
examples for w =4, 2= -

When bit i in the binary 2'=2 [

representation has value 1, 20 _ { '

it contributes 2 to the

? 'II 2 3 4567 8 91011 1213141516

value.

[0001]
[0101]
[1011]
[1111]




I Two’s complement encoding

» Value of most significant bit is negated

- Essentially, this makes half of all representable values negative

Figure 2.16

3
Comparing unsigned : it
and two's-complement > 7
representations for w = 4, 2 -+ [
The weight of the most 2 =2 [
significant bit is —8 for 204 .

r
two's complement and +8 “§ —T -6 -5 —4 -3 —

for unsigned, yielding a net =1 —
difference of 16. [1011] d

gl _-D

== P
I
-

=

Lo

L o
G
S

=+ n

=

+ =
[=4]

+ o
|
o
_—
=

o =
]
L

T
i

T8
_-—l-
on

.__-"
o

Figure 2.17 + oW
Conversion from two's
complement to unsigned. .
Fun-:?ion T2U converts Ll 4+ 2" Unsigned
negative numbers to large
positive numbers. Two's Lg

complement

—»

—ow-1

negative numbers



I Conversions

Smaller unsigned - larger unsigned 0101 (5) - 0000 0101 (5)

- Safe; zero-extend to preserve value

Smaller two’s comp. - larger two’s comp. 1101 (-3) - 1111 1101 (-3)
- Safe; sign-extend to preserve value

0101 (5) - 0101 (5)
0011 0101 (53) - 0101 (5)

Larger — smaller (unsigned or two’s comp.)
- Overflow if new type isn’t large enough to fit (otherwise, truncate)

Unsigned - two’s comp. 1181 éi%) B ;181 éS%)

— Overflow if first bit is non-zero (otherwise, no change)

Two’s comp. - unsigned 101 (5) - 0101 (5)

- Overflow if value is negative (otherwise, no change) 1101 (-2) - 1101 (13)



I Two’s complement encoding

» Taking the two’s complement is equivalent to
subtracting the number from 2N, where N Is the
number of bits in the integer

« Advantage: can use arithmetic as usual
- Ex:5-3=5+(-3) = 0101 + 1101 = 0010 (2)
- Ex:1-3=1+(-3) =0001 + 1101 = 1110 (-2)
- Ex: -2—-3=(-2) +(-3) = 1110 + 1101 = 1011 (-5)



I Other encodings

* Sign magnitude
- Interpret most-significant bit as a sign bit

- Interpret remaining bits as a normal unsigned int

- Disadvantages:

e Two zeros: -0 and +0 [1000 and 0000]
* Less useful for arithmetic



Other encodings

* Ones’ complement

- Invert all the bits for negative numbers
- Less useful for arithmetic than two’s complement

- However, it enables a neat trick: to perform two’s
complement, just do one’s complement then add one

Ex:5=0101 - (one’'s comp.) - 1010 - (addone) - 1011 =-5 (-8 +2 + 1)

Aside: Why does this work? The sum of a number and it's ones’ complement is all ones

(or 2N-1 where N is the number of bits). Because taking the two’s complement of x is
equivalent to subtracting x from 2N, the results are equal:

2N-1 -x+1=2N-x



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

