
  

CS 261
Fall 2016

Mike Lam, Professor

Binary Information

3735928559
(convert to hex)



  

Binary information

● Topics

– Base conversions (bin/dec/hex)

– Data sizes

– Byte ordering

– Bitwise operations



  

Why binary?

● Computers store information in binary encodings

– 1 bit is the simplest form of information (on / off)

– Minimizes storage and transmission errors

● To store more complicated information, use more bits

– However, we need context to understand them

– Data encodings provide context

– For the next two weeks, we will study encodings

– First, let’s become comfortable working with binary



  

Base conversions

● Binary: bit i represents the value 2i

– Bits typically written from most to least significant (i.e., 23 22 21 20)

1   =                    1 = 0∙23 + 0∙22 + 0∙21 + 1∙20 = [0001]

5   =        4       + 1 = 0∙23 + 1∙22 + 0∙21 + 1∙20 = [0101]

11 = 8 +        2 + 1 = 1∙23 + 0∙22 + 1∙21 + 1∙20 = [1011]

15 = 8 + 4 + 2 + 1 = 1∙23 + 1∙22 + 1∙21 + 1∙20 = [1111]

Binary to decimal:
Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:
Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero
Every power of two become 1; all other bits are 0

11-8=3              3-2=1  1-1=0

15-8=7  7-4=3  3-2=1  1-1=0

5-4=1              1-1=0

1-1=0



  

Base conversions

● Hexadecimal: each char represents 4 bits

– You will/should memorize these eventually

Dec Bin Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

Dec Bin Hex

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF



  

Data sizes

● 1 byte = 2 hex chars (= 2 nibbles!) = 8 bits

● Machine word = size of an address (w)

– (i.e., the size of a pointer in C)

– Early computers used 16-bit addresses
● Could address 216 bytes = 64 KB

– Now 32-bit (4 bytes) or 64-bit (8 bytes)
● Can address 4GB or 16 EB

128

27

64

26

32

25

16

24

8

23

4

22

2

21

1

20

1 byte:

1 hex char (Y) 1 hex char (Z)

Prefix Bin Dec

Kilo 210 ~103

Mega 220 ~106

Giga 230 ~109

Tera 240 ~1012

Peta 250 ~1015

Exa 260 ~1018

(most significant) (least significant)

Value of
byte 0xYZ 
is 16Y + Z 



  

Byte ordering

● Big endian: most significant byte (MSB) first (MSB to LSB)

– Standard way to write binary/hex (implied with “0x” prefix)

● Little endian: least significant byte first (LSB to MSB)

– Default byte ordering on most Intel-based machines

0x11223344 in big endian:    11 22 33 44
0x11223344 in little endian: 44 33 22 11

Decimal: 1
16-bit big endian:     00000000 00000001  (hex: 00 01)
16-bit little endian:  00000001 00000000  (hex: 01 00)

Decimal: 19 (16+3)
16-bit big endian:     00000000 00010011  (hex: 00 13)
16-bit little endian:  00010011 00000000  (hex: 13 00)

Decimal: 256
16-bit big endian:     00000001 00000000  (hex: 01 00)
16-bit little endian:  00000000 00000001  (hex: 00 01)



  

Bitwise operations

● Basic bitwise operations

– & (and)      | (or)      ^ (xor)

● Not boolean algebra!

– && (and) || (or)    ! (not)

– 0 (false)    non-zero (true)

● Important properties:
– x & 0 = 0

– x & 1 = x

– x | 0 = x

– x | 1 = 1

– x ^ 0 = x

– x ^ x = 0

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

AND OR XOR

● Commutative:
   x & y = y & x
   x | y = y | x
   x ^ y = y ^ x

● Associative:
   (x & y) & z = x & (y & z)
   (x | y) | z = x | (y | z)
   (x ^ y) ^ z = x ^ (y ^ z)

● Distributive:
   x & (y | z) = (x & y) | (x & z)
   x | (y & z) = (x | y) & (x | z)



  

Bitwise operations

● Bitwise complement (~) - “flip the bits”

– ~0000 = 1111  (~0 = 1)         ~1010 = 0101  (~0xA = 0x5)

– Also called ones' complement (useful on Friday)

● Left shift (<<) and right shift (>>)

– Left shift: 0110 << 1 = 1100       1 << 3 = binary 1000 = 23 = 8

– Logical right shift (fill zeroes):               1100 >> 2 = 0011

– Arithmetic right shift (fill most sig. bit):  1100 >> 2 = 1111

                                                              0100 >> 2 = 0001

On stu:

 int: 0f00 >> 8 = 000f    (arithmetic)
 int: ff00 >> 8 = ffff
uint: 0f00 >> 8 = 000f    (logical)
uint: ff00 >> 8 = 00ff


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

