CS 261 Fall 2016

Mike Lam, Professor

Binary Information

Binary information

- Topics
- Base conversions (bin/dec/hex)
- Data sizes
- Byte ordering
- Bitwise operations

Why binary?

- Computers store information in binary encodings
- 1 bit is the simplest form of information (on / off)
- Minimizes storage and transmission errors
- To store more complicated information, use more bits
- However, we need context to understand them
- Data encodings provide context
- For the next two weeks, we will study encodings
- First, let's become comfortable working with binary

Base conversions

- Binary: bit i represents the value 2^{i}
- Bits typically written from most to least significant (i.e., $2^{3} 2^{2} 2^{1} 2^{0}$)

$$
\begin{aligned}
& 1=\quad \mathbf{1}=0 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[0001] \\
& \text { 1-1=0 } \\
& 5=4+\mathbf{1}=0 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[0101] \\
& 11=8+2+1=1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=[1011] \quad 11-8=3 \quad 3-2=11-1=0 \\
& 15=8+4+2+1=1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=[1111] \\
& 15-\mathbf{8}=7 \quad 7-\mathbf{4}=3 \quad 3-\mathbf{2}=1 \quad 1-\mathbf{1}=0
\end{aligned}
$$

Binary to decimal:

Add up all the powers of two (memorize powers of two to make this go faster!)
Decimal to binary:
Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero
Every power of two become 1; all other bits are 0

Base conversions

- Hexadecimal: each char represents 4 bits
- You will/should memorize these eventually

Dec	Bin	Hex	Dec	Bin	Hex
0	0000	0×0	8	1000	0×8
1	0001	0×1	9	1001	0×9
2	0010	0×2	10	1010	$0 \times A$
3	0011	0×3	11	1011	$0 \times B$
4	0100	0×4	12	1100	$0 x C$
5	0101	0×5	13	1101	$0 x D$
6	0110	0×6	14	1110	$0 x E$
7	0111	0×7	15	1111	$0 x F$

Data sizes

- 1 byte $=2$ hex chars (= 2 nibbles!) $=8$ bits
(most significant)
(least significant)

Value of byte 0xYZ is $16 \mathrm{Y}+\mathrm{Z}$

- Machine word = size of an address (w)
- (i.e., the size of a pointer in C)
- Early computers used 16-bit addresses
- Could address $2{ }^{16}$ bytes $=64 \mathrm{~KB}$
- Now 32-bit (4 bytes) or 64-bit (8 bytes)
- Can address 4GB or 16 EB

Prefix	Bin	Dec
Kilo	2^{10}	$\sim 10^{3}$
Mega	2^{20}	$\sim 10^{6}$
Giga	2^{30}	$\sim 10^{9}$
Tera	2^{40}	$\sim 10^{12}$
Peta	2^{50}	$\sim 10^{15}$
Exa	2^{60}	$\sim 10^{18}$

Byte ordering

- Big endian: most significant byte (MSB) first (MSB to LSB)
- Standard way to write binary/hex (implied with "0x" prefix)
- Little endian: least significant byte first (LSB to MSB)
- Default byte ordering on most Intel-based machines
0×11223344 in big endian: 11223344
0×11223344 in little endian: 44332211
Decimal: 1
16-bit big endian: 0000000000000001 (hex: 00 01)
16-bit little endian: 0000000100000000 (hex: 01 00)
Decimal: 19 (16+3)
16-bit big endian: 0000000000010011 (hex: 00 13)
16-bit little endian: 0001001100000000 (hex: 1300)
Decimal: 256
16-bit big endian: 0000000100000000 (hex: 01 00)
16-bit little endian: 0000000000000001 (hex: 00 01)

Bitwise operations

- Basic bitwise operations
- \& (and) | (or) ^ (xor)
- Not boolean algebra!
- \&\& (and) || (or) ! (not)
- 0 (false) non-zero (true)
- Important properties:
$-x \& 0=0$
- x \& $1=x$
$-x \mid 0=x$
$-x \mid 1=1$
$-x \wedge 0=x$
$-x \wedge x=0$

AND

- Commutative:

$$
\begin{aligned}
& x \& y=y \& x \\
& x|y=y| x \\
& x \wedge y=y \wedge x
\end{aligned}
$$

- Associative:

$$
\begin{aligned}
& (x \& y) \& z=x \&(y \& z) \\
& (x \mid y)|z=x|(y \mid z) \\
& (x \wedge y) \wedge z=x \wedge(y \wedge z)
\end{aligned}
$$

- Distributive:

$$
\begin{aligned}
& x \&(y \mid z)=(x \& y) \mid(x \& \&) \\
& x \mid(y \& z)=(x \mid y) \&(x \mid z)
\end{aligned}
$$

1	0	1
0	0	1
1	1	1
	OR	

\wedge	0	1
0	0	1
1	1	0
	XOR	

Bitwise operations

- Bitwise complement (\sim) - "flip the bits"
$-\sim 0000=1111(\sim 0=1) \quad \sim 1010=0101(\sim 0 \times A=0 \times 5)$
- Also called ones' complement (useful on Friday)
- Left shift (\ll) and right shift (\gg)
- Left shift: $0110 \ll 1=1100 \quad 1 \ll 3=$ binary $1000=2^{3}=8$
- Logical right shift (fill zeroes): $1100 \gg 2=0011$
- Arithmetic right shift (fill most sig. bit): $1100 \gg 2=1111$
$0100 \gg 2=0001$

On stu:

```
int: 0f00 >> 8 = 000f (arithmetic)
    int: ff00 >> 8 = ffff
uint: 0f00 >> 8 = 000f (logical)
uint: ff00 >> 8 = 00ff
```

