

CS 261
Fall 2016

Mike Lam, Professor

Debugging

Debugging

● “It’s 2am and I just wrote 500 lines of code!”

– “All the functions are there.”

– “I’m done now, right?

● “I should probably run some tests”

– “Just to be sure...”

● “@#$%, it’s not working!”

– “But it looks like it should work...”

Debugging

● A software defect is an error in code that produces incorrect or
undesired behavior

– Colloquially called “bugs”

– Many types: syntax, logic, integration, concurrency

– Many causes: typos, incorrect code, design flaws, ambiguous spec

● Fundamental issue: mismatches between user’s expectations
and machine’s behavior

– Proximate cause (symptom) vs. root cause (defect)

– Debugging is the process of starting from the former and working
towards discovering the latter

– Basically: the process of continually asking “why is this happening?”

– One of the most important practical skills in programming

9 Rules of Debugging

1) Understand the system

2) Make it fail

3) Quit guessing and look

4) Divide and conquer

5) Change one thing at a time

6) Keep an audit trail

7) Check the obvious

8) Get a fresh view

9) If you didn’t fix it, it ain’t fixed

Author: David Agans www.debuggingrules.com

Recommended book
ISBN-13: 978-0814474570

1) Understand the system

● Read The F!@#’ing Manual! (RTFM)

– All of it! (or at least all of the non-reference parts)

● Become familiar with the system

– What does normal operation look like?

– What tools are available?

– Where can you find more details if you need them?

2) Make it fail

● Reasons to induce failures:

– To examine the system more closely

– To allow you to focus on debugging

– To know when you’ve fixed the bug

● Reproducible reports: small, self-contained examples that
illustrate the errant behavior

● Watch for intermittent / non-deterministic errors

● Watch for “impossible” errors

– “When you have eliminated the impossible, whatever remains
(however improbable) must be the truth.” - Sherlock Holmes

● Never throw away a debugging tool

3) Quit guessing and look

● Make sure you are seeing the actual failure

– Including all the details—dig deep!

– Know your tools: printf, debuggers, profilers, etc.

● Add instrumentation to the system

– Even better: design the instrumentation into the system

– Remember that your instrumentation affects the system

– Beware of “heisenbugs” that disappear when you try to
examine them

● Guess at the root cause if you must, but make sure
you check your guesses

4) Divide and conquer

● Iteratively narrow the search space

– Do an experiment that will eliminate a large number of
causes, then do another experiment to narrow the field
even further

– Use comments or (in C) #ifdefs to selectively disable code

– Sometimes version control can help (“git bisect”)

● Fix the bugs you’re aware of

– Don’t let them mask other problems or interfere with
debugging

– If there is “noise” in the system, fix that first

5) Change one thing at a time

● Change things carefully and deliberately

– Don’t just randomly start changing things!

– Weapon analogy: use a sniper rifle, not a shotgun

– Change something; test it before changing something else

– Compare “bad” behavior with existing “good” behavior

– Think about what has changed since the last time it worked

6) Keep an audit trail

● Keep notes on what you did and what happened

– Some of the details are important, but not all of them; learn
what to keep and what to ignore

– Leave the important details in comments

● Try to correlate debugging information with observations
or other information

– Does the problem only reproduce under certain circumstances?

● Considering incorporating debugging test cases into your
regular test suite

– For when you break the same thing again in the future

7) Check the obvious

● Question your assumptions

– Ask your colleagues if you need a sanity check

– In this class: ask on Piazza!

● Start over from the beginning

– Make sure initialization is happening the way you think it is

– Check every step along the way

● Test and calibrate your tools

– You can’t use them to find errors if they’re errant
themselves

8) Get a fresh view

● Don’t be too proud to ask for help

● Report the symptoms, not your theories

● Don’t insist it’s not your fault

● Admit your uncertainties

● Refrain from complaining about well-known
unresolved issues until you’ve fixed your bug

– You may find they’re unrelated

9) If you didn’t fix it, it ain’t fixed

● Make sure you fixed it

– Corollary: make sure that your fix is what fixed it!

– Be very suspicious when a problem “just goes away” by
itself—it is probably still there but is now hidden

● Once you find the problem, fix the root cause

– If you’ve exposed a system design flaw, fix that too (or
alert someone who can)

– Test, test, and test again

– Remember that your “fix” could have broken other things

Debuggers

● A debugger is a program that allows you to examine
another program while it is running

– Execute the program step-by-step

– Examine the contents of memory at any point

– Add breakpoints and watchpoints

– Reverse execution to find the root cause

● Debuggers are more useful with extra information from
the compiler

– In gcc, compile with the “-g” option to enable this

– It’s also useful to disable optimization (“-O0”)

GDB (GNU debugger)

● Basic commands (launch with “gdb <exename>”)

– run <args> - begin execution

– start - run and stop at beginning of main()

– break <file:lineno> - stop at given location

– print / p <expr> - print the current value of an expression

– watch <var> - stop the next time the given variable changes

– next / n - continue to next line of code

– continue / c - continue to next breakpoint

– step / s - step into function

– finish - continue to end of function

– backtrace / bt - show all functions on the call stack

– up / down - navigate through functions on the stack

– quit - exit the debugger

GDB’s Text User Interface (TUI)

● Combined source/debug interface

– Use CTRL-X 1 to enter TUI mode with source only

– Use CTRL-X 2 to enter TUI mode with source and assembly

– Use CTRL-L to refresh the screen if it glitches

– Use CTRL-X a to exit

GDB quick reference guide

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

