

CS 261
Fall 2016

Mike Lam, Professor

Getopt, Structs, and Typedefs
(aka more P1 topics)

Ad-hoc command-line parsing

int main (int argc, char **argv)

{

 // parse options

 for (int i = 0; i < argc; i++) {

 switch (argv[i][1]) {

 case ‘a’: a_flag = true; break;

 case ‘b’: b_flag = true; break;

 default: report_err(); break;

 }

 }

 // get filename

 char *fn = argv[argc-1];

}
What if there's no filename at the end?
What if the filename is "aa.txt"?
How to handle parameters (e.g., “-n 5”)?
How to handle combined flags (e.g., “-ab”)?
What if there is no argv[i][1]?

Valid comands:

./main file.txt

./main -a file.txt

./main -a -b file.txt

Getopt

● There’s a better way!

– getopt() and getopt_long()

– The latter enables longer options (e.g., “--help”)
● Useful (and mostly standard now), but we won’t use it in this course

– Basic idea: call getopt() repeatedly; it will return each of the flags
individually even if they are grouped or out of order; returns -1 when done

– Need to pass an optstring (list of valid flags as a string)

● Use a colon to indicate a flag that takes a parameter (e.g., “-n 4”)

● Static variables

– optarg: pointer to parameter for flags that take them

– optind: index of next flag
● Use this to check for extra arguments at the end!

Getopt example

#include <getopt.h>

int main (int argc, char **argv)

{

 // parse options

 int opt;

 while ((opt = getopt(argc, argv, "ab")) != -1) {

 switch (opt) {

 case 'a': a_flag = true; break;

 case 'b': b_flag = true; break;

 default: report_err(); break; // invalid

 }

 }

 // check for and get filename

 if (optind != argc-1) {

 report_err();

 return 1;

 }

 char *fn = argv[optind];

}

Much more robust!

Exercise
● Write a program (args.c) that takes command-line parameters according to the following usage text:

Usage: ./args [options] <filename>

 Valid options:

 -a Print an 'A'

 -b Print a 'B'

 -c Print a 'C'

 -n <i> Print i copies of 'N'

Valid commands:

./args file.txt

./args -a file.txt

./args -a -c file.txt

./args -abc file.txt

./args -n 4 file.txt

./args -a -n4 file.txt

./args -a -n4 -c file.txt

Invalid commands:

./args

./args -a

./args -n file.txt

Typedefs

● A typedef is a way to create a new type name

– Basically a synonym for another type

– Usually postfixed with "_t"

typedef unsigned char byte_t;

byte_t b1, b2;

Structs

● A struct is a new kind of data type that contains a group
of related sub-variables of any type (including structs!)

– Variables must also be declared with struct keyword

struct vertex {
double x;
double y;
bool visited;

};

double dist(struct vertex p1, struct vertex p2)
{
 return sqrt((p1.x-p2.x)*(p1.x-p2.x) +
 (p1.y-p2.y)*(p1.y-p2.y));
}

int main()
{
 struct vertex p1;
 p1.x = 4.2;
 p1.y = 5.6;
 p1.visited = false;
}

Typedef structs

● We typically simplify the use of structs by creating a
typedef name for them

– For projects, we'll provide both structs and typedefs in headers

typedef struct vertex {
double x;
double y;
bool visited;

} vertex_t;

double dist(vertex_t p1, vertex_t p2)
{
 return sqrt((p1.x-p2.x)*(p1.x-p2.x) +
 (p1.y-p2.y)*(p1.y-p2.y));
}

int main()
{
 vertex_t p1;
 p1.x = 4.2;
 p1.y = 5.6;
 p1.visited = false;
}

Data alignment

● By default, the compiler is allowed to insert padding and/or re-
arrange the members in memory to optimize the program

– Often used to “align” fields on word-addressable boundaries

– Use "__attribute__((__packed__))" to prevent this in GCC

– You'll see this in the elf.h header file for P1

– Caution: this is non-standard and potentially harmful

typedef struct {
 char a;
 char b;
 char c;
 int x;
} stuff_t;

sizeof(stuff_t) == 8

typedef struct __attribute__((__packed__)) {
 char a;
 char b;
 char c;
 int x;
} stuff_t;

sizeof(stuff_t) == 7

Example

● Write a program that reads three bytes from a file

● These bytes represent ASCII encodings of a person's
first, middle, and last initials, respectively

● The program should print the initials as text characters

● With the optional “-u” switch, the program should print
the initials as upper case even if not given that way

● With the optional “-p” switch, the program should print
periods (“.”) after each letter

Exercises

● Extend initials.c

– Add a new switch “-h” that prints help text and exits

– Add a new switch “-s” that adds spaces between letters

– Read and print multiple names from the file, one per line

– Allow names to come from standard input if no filename is specified

● Small programs

– Write a program that takes a single string parameter and reverses it

– Write a program that reads a file and determines if each line is a palindrome

– Write a program that takes as parameters a filename and a two-character hex value, appending the
value to the end of the file

– Write a program that reads a C source file and counts the number of lines that contain a C++ style
comment (e.g., “// text here”)

● Linux utility equivalents

– Write an equivalent to “hd”, which prints the contents of a file in hex followed by character equivalents

– Write an equivalent to “uniq”, which takes a list of words from standard in and reprints the list to
standard out, omitting any immediately-following duplicates

– Write an equivalent to “sort”, which takes a list of numbers or words from standard in and sorts them,
printing the sorted list to standard out (HINT: use the qsort function, and start with numbers!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

