

CS 261
Fall 2016

Mike Lam, Professor

Strings and I/O

Warm-Up: Pointers

int x = 1;

int y[4] = {2, 3, 4, 5};

int *p = &x;

*p = 6;

p = y;

*p = 7;

What are the values of x and y
at the end?

Pointers

int x = 1;

int y[4] = {2, 3, 4, 5};

int *p = &x;

*p = 6;

p = y;

*p = 7;

1

x

Pointers

int x = 1;

int y[4] = {2, 3, 4, 5};

int *p = &x;

*p = 6;

p = y;

*p = 7;

1 2 3 4 5

x

y[]

•

y

Pointers

int x = 1;

int y[4] = {2, 3, 4, 5};

int *p = &x;

*p = 6;

p = y;

*p = 7;

1 2 3 4 5

•

x

y[]

p

•

y

Pointers

int x = 1;

int y[4] = {2, 3, 4, 5};

int *p = &x;

*p = 6;

p = y;

*p = 7;

6 2 3 4 5

•

x

y[]

p

•

y

Pointers

int x = 1;

int y[4] = {2, 3, 4, 5};

int *p = &x;

*p = 6;

p = y;

*p = 7;

6 2 3 4 5

•

x

y[]

p

•

y

Pointers

int x = 1;

int y[4] = {2, 3, 4, 5};

int *p = &x;

*p = 6;

p = y;

*p = 7;

6 7 3 4 5

•

x

y[]

p

•

y

What will this C code print?

 int a = 42;

 int b = 7;

 int c = 999;

 int *t = &a;

 int *u = NULL;

 printf("%d %d\n", a, *t);

 c = b;

 u = t;

 printf("%d %d\n", c, *u);

 a = 8;

 b = 8;

 printf("%d %d %d %d\n", b, c, *t, *u);

 *t = 123;

 printf("%d %d %d %d %d\n", a, b, c, *t, *u);

Arrays and Pointers

● In C, array names are just pointers!
int y[] = {2, 3, 4, 5};

● Same goes for strings (arrays of chars)
– char text[] = “hello”;

● Indexing and dereferencing pointers are equivalent
– *y ≡ y[0] *(y+1) ≡ y[1]

2 3 4 5

•

y

h e l l

•

text

o \0

int* char*

int int intint char char char char charchar

What is the type of “*y”?
What about “y[0]”?
What about “y[4]”?

Questions to Ask

● What is the type of this variable?

– If it’s a pointer, what does it point to?

● Where is this variable located?

– Usually: static region, stack, or heap

– If it’s a pointer, where’s the thing it’s pointing to?

● How large (in bytes) is the variable?

– If it’s a pointer to an array, how large is the array?

“What? Where? How big?”

C Strings

● Strings are arrays of chars terminated (by convention) with null char (‘\0’)

– Declare and initialize (static/stack, no explicit size needed):
● char *name = “John Smith”;

– Declare only (static/stack, size needed):
● char name[11];

– Declare only (heap, size needed):
● char *name = (char*) malloc (sizeof(char) * 11);

● Useful functions (may need to #include <string.h>)

– Find length: strlen

– Copy string or convert / format data into string: snprintf

– Convert to long / float: strtol / strtof

– Compare strings: strncmp

– Search for substring: strstr

Modified “Hello, World”
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define STR_LEN 8

int main(int argc, char **argv)
{
 // check parameters
 if (argc != 3) {
 fprintf(stderr, "Usage: ./hello2 <fname> <lname>\n");
 exit(EXIT_FAILURE);
 }

 // convert name to "First L." format
 char fullname[STR_LEN];
 snprintf(fullname, STR_LEN, "%s %c.", argv[1], argv[2][0]);

 // output new full name
 printf("Hello, %s!\n", fullname);

 return EXIT_SUCCESS;
}

Information = Bits + Context

Standard I/O

● Buffered streams: stdin, stdout, stderr (type is FILE*)

– Flushed when newline (‘\n’) encountered

– Use CTRL-D to indicate end-of-file when typing input from the terminal

● Formatted input/output (scanf / printf)

– Variable number of arguments (varargs)

– Format string and type specifiers:
● %d for signed int, %u for unsigned int

● %c for chars, %s for strings (arrays of chars)

● %f or %e for float, %x for hex, %p for pointer

● Prepend ‘l’ for long (e.g., %ld = long signed int or %lx = long hex)

● Include number for fixed-width field (e.g., %20s for a 20-character field)

● Input: beware of buffer overruns

– Declare a fixed-size buffer and use “safe” input functions (e.g., fgets)

– You may NOT use unsafe functions in this course! (e.g., gets)

File I/O

● Opaque file/stream handles: FILE*

● Open a file: fopen

– Mode: read (‘r’), write (‘w’), append (‘a’)

● Read a character: fgetc

● Read a line of text: fgets

● Read binary data: fread

● Set current file position: fseek

● Write formatted text: fprintf

● Write binary data: fwrite

● Close a file: fclose

Documentation

Simple “cat” program

#include <stdio.h>

#define BUF_SIZE 1024

int main (int argc, char **argv)
{
 char buffer[BUF_SIZE];
 while (fgets(buffer, BUF_SIZE, stdin) != NULL) {
 printf("%s", buffer);
 }
 return 0;
}

Exercise
● Write a program (rev.c) that reverses every line of an input file

1) First, just accept input via standard in (stdin)

./rev <input.txt (or just ./rev and type text followed by CTRL-D)

2) Then, allow the user to specify the filename on the command line

./rev input.txt

Sample input:

Hello, world!
My name is Bob.

ENOD

Sample output:

!dlrow ,olleH
.boB si eman yM

DONE

Hint: use fgets() to read the
input a line at a time into a char
array, printing the characters in
reverse after reading each line

FILE* fopen (char *filename, char *mode)
Open a file (mode: 'r' for read, 'w' for write, 'a' for append)

char* fgets (char *str, int count, FILE *stream)
Read a line of text input from a file (returns str, count is max chars)

size_t strlen (char *str)
Calculate the length of a null-terminated string

http://en.cppreference.com/w/c/io/fopen
http://en.cppreference.com/w/c/io/fgets
http://en.cppreference.com/w/c/string/byte/strlen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

