

CS 261
Fall 2016

Mike Lam, Professor

C Introduction
Address Spaces and Pointers

The C Language

● Systems language originally developed for Unix

● Imperative, compiled language with static typing

● “High level” at the time; now considered low-level

● Provides pointers and allows direct access to memory

● Many compilers and standards: we’ll use GNU and C99

Ken Thompson Dennis Ritchie Brian Kernighan

Compilation

usually combined

Makefiles

● The compilation process is usually streamlined using
a build system: Make, CMake, Ant, Maven

● In this class, we will use Make

● Provide a “Makefile” that contains targets,
dependencies, and build commands

● Example Makefile:

hello: hello.c
 gcc -g -O0 -o hello hello.c

target dependency

build command

Hello, World

● How is this different from Java?

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

Similarities to Java

● Semicolons!

● Comments

● Basic types: int, char, float, double

● Loops: do, while, for

● Switch statements

– Parameter must be integer

● Method/function definitions

● Fixed-sized arrays

Differences from Java

● Additional fixed-width types: uint32_t, int32_t, size_t (in stdint.h)

● Booleans are “bool” (in stdbool.h)

– Actually integers: 0 is “false”, anything else is “true”

● No objects (but it does have structs)

● No built-in string type (C strings are just arrays of chars)

● No built-in exceptions

● Different I/O functions: printf, fgets, scanf (in stdio.h)

● No standard container framework

● Functions must be declared before use (declaration vs. definition)

● Interface (.h) vs implementation (.c)

● Preprocessor macros (#include, #define)

Pointers

● A pointer is a variable that contains a memory address

● Declared with “*” operator

– int *p;

– int **p; // yes, this works

● Often initialized using the “&” operator (“address of”)

– int x;

– p = &x;

● Dereferenced with “*” operator (“follow the pointer”)

– *p = 7;

● C does NOT check pointers before dereferencing them!

– int *p = 0; *p = 123; // this will segfault!

Process address spaces

● Static: created at load time, destroyed on exit (fixed size)

● Stack: created/destroyed at function calls (fixed size)

● Heap: allocated/deallocated with malloc/free (variable size)
● Watch for memory leaks; you may not leak memory in this course!

stack

heap
static

Every process has its
own address space

Process address spaces

int global_var;

void foo()

{

 static int foo_st_var;

 int foo_var;

}

int main()

{

 int main_var;

 int *malloc_var = (int*)malloc(sizeof(int));

 foo();

 return 0;

}

For each of the following
variables, classify them as
static (C), stack (K), or
heap (H):

● global_var
● foo_st_var
● foo_var
● main_var
● malloc_var

Does this program leak
memory? If so, where?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

