

CS 261
Spring 2024

Mike Lam, Professor

Y86 Semantics

Y86 semantics

● Semantics: the study of meaning
– What does an instruction "mean"?
– For us, it is the effect that it has on the machine
– This requires understanding the purpose and actions of all

stages of the Y86-64 CPU

Fetch

Decode
Execute

Memory
Write back
PC update

Fetch

● Read ten bytes from
memory at address
PC

● Extract instruction
fields
– icode and ifun
– rA and rB
– valC

● Compute valP
(address of next
instruction)
– PC + 1 + needsRegIDs

+ 8*needsValC

Q: Which instructions have a valC? Which instructions only need the icode and ifun?

Decode

● Read register file
– Read srcA into valA
– Read srcB into valB

Q: Which instructions read from both rA and rB?

Execute

● Perform arithmetic or
logic operation
– Could also be an

effective address
calculation or stack
pointer increment /
decrement

– First input is valC
(immediate/offset),
valA (register), or a
constant (-8 or 8)

– Second input is valB
(register) or zero

● Set condition codes
– Only if OPq Q: Which instructions use the ALU?

(Hint: more than you might initially expect!)

Memory

● Read or write memory
– No instruction does

both!
– Effective address is

valE or valA
(depending on icode)

– Data to be written is
either valA or valP
(depending on icode)

– Data is read into valM

Q: Which instruction needs to write the address of the next instruction (valP) to memory?

Write back

● Write register file
– Write valE (from

ALU execute) to
dstE for some
icodes

– Write valM (from
memory) to dstM
for some icodes

– Use value 0xF to
disable one or both
write(s) for some
icodes

Q: Which instruction needs to write values to two different registers?

PC update

● Set new PC
– valP (next

instruction) for
most icodes

– Either valP or valC
for conditional
jumps depending
on Cnd

– valM (return
address popped
from stack) for ret

Q: Which instruction uses neither valC, valM, or valP to set the PC?

Question

● What effect does the following instruction have?

– A) It sets RSP to 128
– B) It moves the 64-bit value 128 into memory at the

location stored in RSP
– C) It sets RSP to 128 and increments the PC by 10
– D) It pushes the value 128 onto the stack
– E) It pushes the value at address 128 onto the stack

irmovq $128, %rsp

Y86 semantics

● Semantics: the study of meaning
– For us, it is the effect that it has on the machine
– We should specify these semantics very formally
– This will help us think correctly about P4
– ISA reference sheet includes mathematical semantics

Aside: syntax notes

● R[RSP] = the value of %rsp
● R[rA] = the value of register with id rA

● M1[PC] = the value of one byte in memory at address PC

● M8[PC+2] = the value of eight bytes in memory at address PC+2

● rA:rB = M1[PC+1] means read the byte at address PC+1

– Split it into high- and low-order 4-bits for rA and rB

● Cond(CC, ifun) returns 0 or 1 based on CC and ifun

– Determines whether the given CMOV/JUMP should happen

– See CS:APP 3.6.1-3.6.3 and Figure 3.15
● Convention: write addresses using hex padded to three chars
● Convention: write integer literals using decimal w/ no padding

Example: IRMOVQ

What effects does this instruction have?

Example: IRMOVQ

This instruction sets %rsp to 128 and increments the PC by 10

128

Example: POPQ

This instruction sets %rax to 9, sets %rsp to 128, and increments the PC by 2

R[%rsp] = 120 M
8
[120] = 9

Example: CALL

R[%rsp] = 128

This instruction sets %rsp to 120, stores the return address 0x040 at [%rsp],
and sets the PC to 0x041

128 – 8 = 120

Y86 semantics

Y86 CPU (P4)

1) Fetch ←P3!

▪ Splits instruction at PC into pieces

▪ Save info in y86_inst_t struct

2) Decode (register file)

▪ Reads registers

▪ P4: Sets valA

3) Execute (ALU)

▪ Arithmetic/logic operation, effective
address calculation, or stack pointer
increment/decrement

▪ P4: Sets Cnd and returns valE

4) Memory (RAM)

▪ Reads/writes memory

5) Write back (register file)

▪ Sets registers

6) PC update

▪ Sets new PC

inst

P3 fetch()

P4 decode_execute()

P4 memory_wb_pc()

von Neumann architecture

	Slide 1
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

