

CS 261
Spring 2024

Mike Lam, Professor

x86-64 Miscellaneous Topics

Q. Why do assembly programmers
need to know how to swim?

A. Because they work below C level!

x86-64

Topics

● Homogeneous data structures
– Arrays
– Nested / multidimensional arrays

● Heterogeneous data structures
– Structs / records
– Unions

● Floating-point code

Arrays

● An array is simply a block of memory (bits)
– Fixed-sized homogeneous elements of a particular type (context)
– Contiguous layout
– Fixed length (not stored as part of the array!)

int32_t stuff[3];

3 elements
each element is 4 bytes wide
total size is 3 * 4 = 12 bytes

stuff

stuff[2]

stuff[1]

stuff[0]

0x600108

0x600104

0x600100

 movq $0x600100, %rbx
 movl $7, (%rbx)
 movl $7, 4(%rbx)
 movl $7, 8(%rbx)

stuff[0] = 7
stuff[1] = 7
stuff[2] = 7

Arrays and pointers

● Array name is essentially a pointer to first element (base)
– The ith element is at address (base + size * i)

● C pointer arithmetic uses intervals of the element width
– No need to explicitly multiply by size in C
– “stuff+0” or “stuff” is the address of the first element

– “stuff+1” is the address of the second element

– “stuff+2” is the address of the third element

● Indexing = pointer arithmetic plus dereferencing
– “stuff[i]” means “*(stuff + i)”

– In assembly, use the scaled index addressing mode
● (base, index, scale) → e.g., (%rbx, %rdi, 4) for 32-bit elements

Question

int64_t data[10];

data

stuff[2]

stuff[1]

stuff[0]

0x600110

0x600108

0x600100

 movq $0x600100, %rbx
 movq $0, %rdx
 jmp L2
L1:
 movq $0, ___________
 incq %rdx
L2:
 cmpq $10, $rdx
 jl L1

for (int i = 0; i < 10; i++) {
 data[i] = 0;
}

... ...

● Fill in the blank to correctly translate the
following C code into x86-64:

Question

int64_t data[10];

data

stuff[2]

stuff[1]

stuff[0]

0x600110

0x600108

0x600100

 movq $0x600100, %rbx
 movq $0, %rdx
 jmp L2
L1:
 movq $0, (%rbx, %rdx, 8)
 incq %rdx
L2:
 cmpq $10, $rdx
 jl L1

for (int i = 0; i < 10; i++) {
 data[i] = 0;
}

... ...

● Fill in the blank to correctly translate the
following C code into x86-64:

Nested / multidimensional arrays

● Generalizes cleanly to multiple dimensions
– Think of the elements of outer dimensions as being arrays of inner dimensions
– “Row-major” order: outer dimension specified first
– E.g., “int16_t grid[4][3]” is a 4-element array of 3-element arrays of 16-bit integers
– 2D: Address of (i,j)th element is (base + size(cols * i + j))

– 3D: Address of (i,j,k)th element is (base + size((n
d1

 * n
d2

) * i + n
d2

 * j + k))

grid

grid[0]

grid[1]

grid[2]

grid[3]

grid[0][0]

grid[0][1]

grid[0][2]

0x600100

0x600106

0x60010c

0x600112

+2 +4 +6

grid

0x600100

0x600106

0x60010c

0x600112

Structs

● C structs are also just regions of memory
– “Structured” heterogeneous regions--they’re split into fields
– Contiguous layout (w/ occasional gaps for alignment)
– Offset of each field can be determined by the compiler
– Sometimes called “records” generally

struct {
 int i;
 int j;
 int a[2];
 int *p;
} x;

(%rbx = &x and %rdi = 1)

movl $1, (%rbx)
movl $2, 4(%rbx)
movl $3, 8(%rbx)
movl $4, 8(%rbx, %rdi, 4)
movq $0, 16(%rbx)

x.i = 1;
x.j = 2;
x.a[0] = 3;
x.a[1] = 4;
x.p = NULL;

Alignment

● Alignment restrictions require addresses be n-divisible
– E.g., 4-byte alignment means all addresses must be divisible by 4
– Specified using an assembler directive
– Improves memory performance if the hardware matches
– Can be avoided in C using “attribute (packed)” (as in elf.h)

struct {
 int i;
 char c;
 int j;
} rec;

i c j

i c j

i c j

i c j

0 4 8 12 16 20 24

2-byte

4-byte

8-byte

None

Union

● C unions are also just regions of memory
– Can store one “thing”, but it could be multiple sizes depending on

what kind of “thing” it currently is (so context is even more important!)
– All “fields” start at offset zero
– Generally a bad idea! (circumvents the type system in C)
– Can be used to do OOP in C (i.e., polymorphism)

typedef enum { CHAR, INT, FLOAT } objtype_t;

typedef struct {
 objtype_t type;
 union {
 char c;
 int i;
 float f;
 } data;
} obj_t;

obj_t foo;

foo.type = INT;
foo.data.i = 65;

printf(“%c”, foo.data.c); ← VALID!

Aside: Enums

● Enumerations are types where all values are listed
– Declared in C using enum keyword

– In C, the actual values are stored as integers
– Can assign integer values if desired
– Primary advantage: named constants

typedef enum {
MON = 1, TUE, WED, THU, FRI, SAT, SUN

} day_t;

// essentially the same as: int midterm_day = 3;
day_t midterm_day = WED;

Floating-point code

● x87: extension of x86 for floating-point arithmetic
– Originally for the 8087 floating-point co-processor
– Adds new floating-point "stack" registers ST(0) – ST(7)

● 80-bit extended double format (15 exponent and 63 significand bits)

– Push/pop with FLD and FST instructions

– Arithmetic: FADD, FMUL, FSQRT, etc.

– Largely deprecated now in favor of new SIMD architectures

Floating-point code

● Single-Instruction, Multiple-Data (SIMD)
– Performs the same operation on multiple pairs of elements
– Also known as vector instructions

● Various floating-point SIMD instruction sets
– MMX, SSE, SSE2, SSE3, SSE4, SSE5, AVX, AVX2
– 16 new extra-wide XMM (128-bit) or YMM (256-bit)

registers for holding multiple elements
● Floating-point arguments passed in %xmm0-%xmm7
● Return value in %xmm0
● All registers are caller-saved

Floating-point code

● SSE (Streaming SIMD Extensions)
– 128-bit XMM registers

● Can store two 64-bit doubles or four 32-bit floats

– New instructions for movement and arithmetic
● General form: <op><s|p><s|d>
● <s|p>: s=scalar (single data) p=packed (multiple data)
● <s|d>: s=single (32-bit) d=double (64-bit)
● E.g., “addsd” = add scalar 64-bit doubles
● E.g., “mulps = multiply packed 32-bit floats

● AVX (Advanced Vector Extensions)
– 256-bit YMM registers

● Can store four 64-bit doubles or eight 32-bit floats

– Similar instructions as SSE (but with “v” prefix, e.g., vmulps)

f f f f

d d

%xmm0

SSE/AVX

● Movement
– movss / movsd

– movaps / movapd

● Conversion
– cvtsi2ss / cvtsi2sd

– cvtss2si / cvtsd2si

– cvtss2sd / cvtsd2ss

● Arithmetic
– addss / addsd

– addps / addpd

… (sub, mul, div,

 max, min, sqrt)

– andps / andpd

– xorps / xorpd

● Comparison
– ucomiss / ucomisd

(AVX has "v___" opcodes)

Bitwise operations in SSE/AVX

● Assembly instructions provide low-level access to
floating-point numbers
– Some numeric operations can be done more efficiently

with simple bitwise operations
● AKA: Floating-Point Hacks™

– Set to zero (value XOR value)
– Absolute value (value AND 0x7fffffff)

– Additive inverse (value XOR 0x80000000)

● Lesson: Information = Bits + Context
● (even if it wasn't the intended context!)

Preview: Y86-64 ISA

8 %r8
9 %r9
10 %r10
11 %r11
12 %r12
13 %r13
14 %r14

Not in CS:APP:
 iotrap id C id

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

