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Topics

● Control flow
● Condition codes
● Jumps and conditional moves
● “Goto code”
● Loops
● Translating from C to x86-64



  

Motivation

● We cannot translate the following C function to assembly, 
using only data movement and arithmetic operations
– Fundamental requirement: ability to control the flow of program 

execution (i.e., decision-making)
– Necessary for translating structured code

int min (int x, int y)
{
    if (x < y) {
        return x;
    } else {
        return y;
    }
}



  

Control flow

● The program counter (PC) tracks the address of the next 
instruction to be executed
– To change the PC in assembly, use a jump instruction

● Often the jump will be relative to the current PC value

– In assembly, the target of a jump is usually a label, which is 
converted to a code address by the assembler

● Labels are written using colon notation (e.g., “L1:”)

– However, unconditional jumps aren’t sufficient for decision-making
● In fact, the compiler can just re-arrange code to avoid them

    movl $2, %eax
    jmp L1
    movl $3, %eax # never executed!
L1:
    movl $4, %eax



  

Conditional jumps

● Conditional jumps only jump under certain conditions
● In machine/assembly code, conditional jumps are often 

encoded using a pair of instructions
– The first sets the condition codes of the CPU

● On x86-64, the FLAGS register
● Arithmetic/logical instructions do this as a side effect
● Special-purpose instructions cmp and test

– The second jumps base on the value of the condition codes
● On x86-64, many variants: “jump-if-equal”, “jump-if-less-than”, etc.

cmpl %eax, %ecx # means “compare %ecx with %eax”

jle pos1 # means “jump-if-less-than-or-equal”



  

Condition codes

● x86-64: special %flags register stores bits for these condition codes:
– CF (carry): last operation resulted in a carry out or borrow in

● (e.g, overflow for unsigned arithmetic)

– ZF (zero): last operation resulted in a zero
– SF (sign): last operation resulted in a negative value
– OF (overflow): last operation caused a two's complement overflow (negative or 

positive)

● As well as a few we won’t use:
– PF (parity): last operation resulted in an even number of 1 bits in the eight least 

significant bits
– AF (adjust): last operation resulted in a carry out for the four least significant bits
– IF (interrupt): CPU will handle interrupts

● Use $eflags to reference this register in GDB
– E.g., “print $eflags” or “display $eflags”



  

Condition codes

● In addition, the carry flag is set if an addition requires a 
carry out of the most significant (leftmost) bit
– Basically, it’s the “extra bit” necessary to represent the result
– E.g., 1001 + 0001 = 1010  (CF=0)

– E.g., 1111 + 0001 = 0000  (CF=1)

● In subtraction, the carry (borrow) flag is set if a subtraction 
requires a borrow into the most significant (leftmost) bit
– E.g., 1000 - 0001 = 0111  (CF=0)

– E.g., 0000 - 0001 = 1111  (CF=1)



  

Condition codes

● Special cmp and test instructions

– cmp compares two values (computes arg
2
 - arg

1
)

● NOTE REVERSED ORDERING – also, the result is not saved
● Type-agnostic: all flags are set, but not all are relevant!
● Does not change either operand

– test checks for non-zero values (computes arg
2
 & arg

1
)

● Often, the arguments are the same (or one is a bit mask)
● Always sets carry and overflow flags to zero
● Does not change either operand

cmpl %eax, %ecx # means “compare %ecx with %eax”

testl $0xFF, %edx # means “check low-order 8 bits of %edx”



  

Question

● Suppose %rax = 5 and %rbx = 10. Which 
flag(s) will be set after the following instruction?

cmpq %rax, %rbx   # computes %rbx - %rax

– A) CF
– B) ZF
– C) SF
– D) None
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● Suppose %rax = 5 and %rbx = 10. Which 
flag(s) will be set after the following instruction?

cmpq %rbx, %rax # computes %rax - %rbx

– A) CF
– B) ZF
– C) SF
– D) None



  

Question

● Suppose %rax = 5 and %rbx = 10. Which 
flag(s) will be set after the following instruction?

testq %rax, %rbx # computes %rbx & %rax

– A) CF
– B) ZF
– C) SF
– D) None



  

Jump instructions

Type 
difference



  

Conditional moves

● Similar to conditional jumps, but they move data if 
certain condition codes are set
– Benefit: no branch prediction penalty

● We'll see how this produces faster code in a few weeks

– In C code: "x = ( <cond> ? <tvalue> : <fvalue>)"

  cmpq %rax, %rbx
  jg L01
  movq %rax, %rcx
  jmp L02
L01:
  movq %rbx, %rcx
L02:

  movq   %rax, %rcx
  cmpq   %rax, %rbx
  cmovg  %rbx, %rcx



  

Conditional moves

● Similar to conditional jumps, but they move data if 
certain condition codes are set
– Benefit: no branch prediction penalty

● We'll see how this produces faster code in a few weeks

– In C code: "x = ( <cond> ? <tvalue> : <fvalue>)"

  cmpq %rax, %rbx
  jg L01
  movq %rax, %rcx
  jmp L02
L01:
  movq %rbx, %rcx
L02:

  movq   %rax, %rcx
  cmpq   %rax, %rbx
  cmovg  %rbx, %rcx



  

Example

C code:

int min (int x, int y)
{
    if (x < y) {
        return x;
    } else {
        return y;
    }
}

x86-64 assembly:
(x in %edi, y in %esi)

min:
cmpl %esi, %edi
jge .L3
movl %edi, %eax
ret

.L3:
movl %esi, %eax
ret



  

Example

C code:

int min (int x, int y)
{
    if (x < y) {
        return x;
    } else {
        return y;
    }
}

x86-64 assembly:
(x in %edi, y in %esi)

min:
cmpl %esi, %edi
jge .L3
movl %edi, %eax
ret

.L3:
movl %esi, %eax
ret

y x



  

Example

C code:

int min (int x, int y)
{
    if (x < y) {
        return x;
    } else {
        return y;
    }
}

x86-64 assembly:
(x in %edi, y in %esi)

min:
cmpl %esi, %edi
jge .L3
movl %edi, %eax
ret

.L3:
movl %esi, %eax
ret



  

Example

C code:

int min (int x, int y)
{
    if (x < y) {
        return x;
    } else {
        return y;
    }
}

x86-64 assembly:
(x in %edi, y in %esi)

min:
cmpl %esi, %edi
jge .L3
movl %edi, %eax
ret

.L3:
movl %esi, %eax
ret



  

Textbook’s “Goto code”

● Compilers translate block-structured code to linear code using 
conditional jumps
– We can simulate conditional jumps in C using the goto statement

● General template: "if (<cond>) goto <label>;"
● Syntax for labels is the same in C and assembly (colon notation)

● CS:APP: C “goto code” is code that uses only if/goto and goto
– No blocks (and therefore no “else” blocks or explicit loops)
– Not a good idea in general!

● Famous letter by Dijkstra: "Go To Statement Considered Harmful"

– However, it is useful for pedagogical purposes (closer to assembly)



  

Example

C code:

if (x < y) {
    printf("A");
} else {
    printf("B");
}
printf("C");

C goto code:

    if (x >= y) goto L1;
    printf("A");
    goto L2;
L1:
    printf("B");
L2:
    printf("C");

note inverted 
condition!

C code:

while (x < 5) {
    x = x – 1;
}

C goto code:

    goto L2;
L1:
    x = x – 1;
L2:
    if (x < 5) goto L1;



  

Loops

● Basic idea: jump back to an earlier label
● Three basic forms:

– Do-while loops
– Jump-to-middle loops
– Guarded-do loops

● Note: we’ll use goto code in C first
– Just to avoid unnecessary complication
– If you can translate a loop into goto code, it's then much 

easier to convert to assembly



  

Loops

do
 <body-statement>

while (<test-expr>);

loop:
  <body-statement>
  if (<test-expr>)
    goto loop;

while (<test-expr>)
    <body-statement>

  goto test;
loop:
  <body-statement>
test:
  if (<test-expr>)
    goto loop

  if (!<test-expr>)
    goto done
loop:
  <body-statement>
  if (<test-expr>)
    goto loop
done:

Do-while
loop

Jump-to-
middle
loop

Guarded-
do loop



  

Loops

do
 <body-statement>

while (<test-expr>);

loop:
  <body-statement>
  if (<test-expr>)
    goto loop;

while (<test-expr>)
    <body-statement>

  goto test;
loop:
  <body-statement>
test:
  if (<test-expr>)
    goto loop

  if (!<test-expr>)
    goto done
loop:
  <body-statement>
  if (<test-expr>)
    goto loop
done:

Do-while
loop

Jump-to-
middle
loop

Guarded-
do loop



  

Loops

for  (<init-expr>; <test-expr>; <update-expr>)
    <body-statement>

  goto test;
loop:
  <body-statement>
test:
  if (<test-expr>)
    goto loop

Jump-to-middle loop

  if (!<test-expr>)
    goto done
loop:
  <body-statement>
  if (<test-expr>)
    goto loop
done:

Guarded-do loop



  

Loops

for  (<init-expr>; <test-expr>; <update-expr>)
    <body-statement>

  <init-expr>
  goto test;
loop:
  <body-statement>
  <update-expr>
test:
  if (<test-expr>)
    goto loop

Jump-to-middle loop Guarded-do loop

  <init-expr>
  if (!<test-expr>)
    goto done;
loop:
  <body-statement>
  <update-expr>
  if (<test-expr>)
    goto loop
done:



  

Question

● T/F: We can always translate a program from 
structured code (with if/then and loops) to 
linear/goto code.



  

Related coursework

● We can always (and automatically!) translate 
from structured code to linear/goto code
– This is what a compiler does!
– If you’re interested in learning more about how this 

works, plan to take CS 432 as your systems elective

CompilerStructured Code
(C, Java, etc.)

Linear Code
(x86-64, etc.)



  

Exercise

● Convert the following C function into x86-64 assembly:

    int sum = 0;
    int x = 1;
    while (x < 10) {
        sum = sum + x;
        x = x + 1;
    }

Hint: Use jump-to-middle 
for the while loop



  

Exercise

● Convert the following C function into x86-64 assembly:

    int sum = 0;
    int x = 1;
    while (x < 10) {
        sum = sum + x;
        x = x + 1;
    }

        movl    $0, %eax # sum = 0
        movl    $1, %edx # x = 1
        jmp     test # goto test
loop:
        addl    %edx, %eax # sum = sum + x
        addl    $1, %edx # x = x + 1
test:
        cmpl    $10, %edx # if (x < 10)
        jl      loop #   goto loop

Hint: Use jump-to-middle 
for the while loop
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