

CS 261
Spring 2024

Mike Lam, Professor

x86-64 Control Flow

Topics

● Control flow
● Condition codes
● Jumps and conditional moves
● “Goto code”
● Loops
● Translating from C to x86-64

Motivation

● We cannot translate the following C function to assembly,
using only data movement and arithmetic operations
– Fundamental requirement: ability to control the flow of program

execution (i.e., decision-making)
– Necessary for translating structured code

int min (int x, int y)
{
 if (x < y) {
 return x;
 } else {
 return y;
 }
}

Control flow

● The program counter (PC) tracks the address of the next
instruction to be executed
– To change the PC in assembly, use a jump instruction

● Often the jump will be relative to the current PC value

– In assembly, the target of a jump is usually a label, which is
converted to a code address by the assembler

● Labels are written using colon notation (e.g., “L1:”)

– However, unconditional jumps aren’t sufficient for decision-making
● In fact, the compiler can just re-arrange code to avoid them

 movl $2, %eax
 jmp L1
 movl $3, %eax # never executed!
L1:
 movl $4, %eax

Conditional jumps

● Conditional jumps only jump under certain conditions
● In machine/assembly code, conditional jumps are often

encoded using a pair of instructions
– The first sets the condition codes of the CPU

● On x86-64, the FLAGS register
● Arithmetic/logical instructions do this as a side effect
● Special-purpose instructions cmp and test

– The second jumps base on the value of the condition codes
● On x86-64, many variants: “jump-if-equal”, “jump-if-less-than”, etc.

cmpl %eax, %ecx # means “compare %ecx with %eax”

jle pos1 # means “jump-if-less-than-or-equal”

Condition codes

● x86-64: special %flags register stores bits for these condition codes:
– CF (carry): last operation resulted in a carry out or borrow in

● (e.g, overflow for unsigned arithmetic)

– ZF (zero): last operation resulted in a zero
– SF (sign): last operation resulted in a negative value
– OF (overflow): last operation caused a two's complement overflow (negative or

positive)

● As well as a few we won’t use:
– PF (parity): last operation resulted in an even number of 1 bits in the eight least

significant bits
– AF (adjust): last operation resulted in a carry out for the four least significant bits
– IF (interrupt): CPU will handle interrupts

● Use $eflags to reference this register in GDB
– E.g., “print $eflags” or “display $eflags”

Condition codes

● In addition, the carry flag is set if an addition requires a
carry out of the most significant (leftmost) bit
– Basically, it’s the “extra bit” necessary to represent the result
– E.g., 1001 + 0001 = 1010 (CF=0)

– E.g., 1111 + 0001 = 0000 (CF=1)

● In subtraction, the carry (borrow) flag is set if a subtraction
requires a borrow into the most significant (leftmost) bit
– E.g., 1000 - 0001 = 0111 (CF=0)

– E.g., 0000 - 0001 = 1111 (CF=1)

Condition codes

● Special cmp and test instructions

– cmp compares two values (computes arg
2
 - arg

1
)

● NOTE REVERSED ORDERING – also, the result is not saved
● Type-agnostic: all flags are set, but not all are relevant!
● Does not change either operand

– test checks for non-zero values (computes arg
2
 & arg

1
)

● Often, the arguments are the same (or one is a bit mask)
● Always sets carry and overflow flags to zero
● Does not change either operand

cmpl %eax, %ecx # means “compare %ecx with %eax”

testl $0xFF, %edx # means “check low-order 8 bits of %edx”

Question

● Suppose %rax = 5 and %rbx = 10. Which
flag(s) will be set after the following instruction?

cmpq %rax, %rbx # computes %rbx - %rax

– A) CF
– B) ZF
– C) SF
– D) None

Question

● Suppose %rax = 5 and %rbx = 10. Which
flag(s) will be set after the following instruction?

cmpq %rbx, %rax # computes %rax - %rbx

– A) CF
– B) ZF
– C) SF
– D) None

Question

● Suppose %rax = 5 and %rbx = 10. Which
flag(s) will be set after the following instruction?

testq %rax, %rbx # computes %rbx & %rax

– A) CF
– B) ZF
– C) SF
– D) None

Jump instructions

Type
difference

Conditional moves

● Similar to conditional jumps, but they move data if
certain condition codes are set
– Benefit: no branch prediction penalty

● We'll see how this produces faster code in a few weeks

– In C code: "x = (<cond> ? <tvalue> : <fvalue>)"

 cmpq %rax, %rbx
 jg L01
 movq %rax, %rcx
 jmp L02
L01:
 movq %rbx, %rcx
L02:

 movq %rax, %rcx
 cmpq %rax, %rbx
 cmovg %rbx, %rcx

Conditional moves

● Similar to conditional jumps, but they move data if
certain condition codes are set
– Benefit: no branch prediction penalty

● We'll see how this produces faster code in a few weeks

– In C code: "x = (<cond> ? <tvalue> : <fvalue>)"

 cmpq %rax, %rbx
 jg L01
 movq %rax, %rcx
 jmp L02
L01:
 movq %rbx, %rcx
L02:

 movq %rax, %rcx
 cmpq %rax, %rbx
 cmovg %rbx, %rcx

Example

C code:

int min (int x, int y)
{
 if (x < y) {
 return x;
 } else {
 return y;
 }
}

x86-64 assembly:
(x in %edi, y in %esi)

min:
cmpl %esi, %edi
jge .L3
movl %edi, %eax
ret

.L3:
movl %esi, %eax
ret

Example

C code:

int min (int x, int y)
{
 if (x < y) {
 return x;
 } else {
 return y;
 }
}

x86-64 assembly:
(x in %edi, y in %esi)

min:
cmpl %esi, %edi
jge .L3
movl %edi, %eax
ret

.L3:
movl %esi, %eax
ret

y x

Example

C code:

int min (int x, int y)
{
 if (x < y) {
 return x;
 } else {
 return y;
 }
}

x86-64 assembly:
(x in %edi, y in %esi)

min:
cmpl %esi, %edi
jge .L3
movl %edi, %eax
ret

.L3:
movl %esi, %eax
ret

Example

C code:

int min (int x, int y)
{
 if (x < y) {
 return x;
 } else {
 return y;
 }
}

x86-64 assembly:
(x in %edi, y in %esi)

min:
cmpl %esi, %edi
jge .L3
movl %edi, %eax
ret

.L3:
movl %esi, %eax
ret

Textbook’s “Goto code”

● Compilers translate block-structured code to linear code using
conditional jumps
– We can simulate conditional jumps in C using the goto statement

● General template: "if (<cond>) goto <label>;"
● Syntax for labels is the same in C and assembly (colon notation)

● CS:APP: C “goto code” is code that uses only if/goto and goto
– No blocks (and therefore no “else” blocks or explicit loops)
– Not a good idea in general!

● Famous letter by Dijkstra: "Go To Statement Considered Harmful"

– However, it is useful for pedagogical purposes (closer to assembly)

Example

C code:

if (x < y) {
 printf("A");
} else {
 printf("B");
}
printf("C");

C goto code:

 if (x >= y) goto L1;
 printf("A");
 goto L2;
L1:
 printf("B");
L2:
 printf("C");

note inverted
condition!

C code:

while (x < 5) {
 x = x – 1;
}

C goto code:

 goto L2;
L1:
 x = x – 1;
L2:
 if (x < 5) goto L1;

Loops

● Basic idea: jump back to an earlier label
● Three basic forms:

– Do-while loops
– Jump-to-middle loops
– Guarded-do loops

● Note: we’ll use goto code in C first
– Just to avoid unnecessary complication
– If you can translate a loop into goto code, it's then much

easier to convert to assembly

Loops

do
 <body-statement>

while (<test-expr>);

loop:
 <body-statement>
 if (<test-expr>)
 goto loop;

while (<test-expr>)
 <body-statement>

 goto test;
loop:
 <body-statement>
test:
 if (<test-expr>)
 goto loop

 if (!<test-expr>)
 goto done
loop:
 <body-statement>
 if (<test-expr>)
 goto loop
done:

Do-while
loop

Jump-to-
middle
loop

Guarded-
do loop

Loops

do
 <body-statement>

while (<test-expr>);

loop:
 <body-statement>
 if (<test-expr>)
 goto loop;

while (<test-expr>)
 <body-statement>

 goto test;
loop:
 <body-statement>
test:
 if (<test-expr>)
 goto loop

 if (!<test-expr>)
 goto done
loop:
 <body-statement>
 if (<test-expr>)
 goto loop
done:

Do-while
loop

Jump-to-
middle
loop

Guarded-
do loop

Loops

for (<init-expr>; <test-expr>; <update-expr>)
 <body-statement>

 goto test;
loop:
 <body-statement>
test:
 if (<test-expr>)
 goto loop

Jump-to-middle loop

 if (!<test-expr>)
 goto done
loop:
 <body-statement>
 if (<test-expr>)
 goto loop
done:

Guarded-do loop

Loops

for (<init-expr>; <test-expr>; <update-expr>)
 <body-statement>

 <init-expr>
 goto test;
loop:
 <body-statement>
 <update-expr>
test:
 if (<test-expr>)
 goto loop

Jump-to-middle loop Guarded-do loop

 <init-expr>
 if (!<test-expr>)
 goto done;
loop:
 <body-statement>
 <update-expr>
 if (<test-expr>)
 goto loop
done:

Question

● T/F: We can always translate a program from
structured code (with if/then and loops) to
linear/goto code.

Related coursework

● We can always (and automatically!) translate
from structured code to linear/goto code
– This is what a compiler does!
– If you’re interested in learning more about how this

works, plan to take CS 432 as your systems elective

CompilerStructured Code
(C, Java, etc.)

Linear Code
(x86-64, etc.)

Exercise

● Convert the following C function into x86-64 assembly:

 int sum = 0;
 int x = 1;
 while (x < 10) {
 sum = sum + x;
 x = x + 1;
 }

Hint: Use jump-to-middle
for the while loop

Exercise

● Convert the following C function into x86-64 assembly:

 int sum = 0;
 int x = 1;
 while (x < 10) {
 sum = sum + x;
 x = x + 1;
 }

 movl $0, %eax # sum = 0
 movl $1, %edx # x = 1
 jmp test # goto test
loop:
 addl %edx, %eax # sum = sum + x
 addl $1, %edx # x = x + 1
test:
 cmpl $10, %edx # if (x < 10)
 jl loop # goto loop

Hint: Use jump-to-middle
for the while loop

	Slide 1
	Slide 2
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 36
	Slide 37
	Slide 38
	Slide 39

