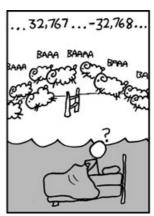
CS 261 Spring 2024

Mike Lam, Professor



https://xkcd.com/571/

Integer Encodings

Integers

- Topics
 - C integer data types
 - Unsigned encoding
 - Signed encodings
 - Conversions

Integer data types in C99

C data type	Minimum	Maximum
signed] char	-127	127
nsigned char	0	255
ort	-32,767	32,767
signed short	0	65,535
	-32,767	32,767
signed	0	65,535
g	-2,147,483,647	2,147,483,647
igned long	0	4,294,967,295
32_t	-2,147,483,648	2,147,483,647
nt32_t	0.	4,294,967,295
t64_t	-9,223,372,036,854,775,808	9,223,372,036,854,775,807
nt64_t	0	18,446,744,073,709,551,615

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require that the data types have at least these ranges of values.

Integer data types on stu

All sizes in bytes; sizes in red are larger than mandated by C99

char	1	int8_t 1
unsigned char	1	uint8_t 1
•		bool 1
short	2	
unsigned short	2	int16_t 2
3		uint16_t 2
int	4	
unsigned int	4	int32_t 4
3		uint32_t 4
long	8	
unsigned long	8	int64_t 8
long long		uint64_t 8
unsigned long long		size_t 8

Unsigned integer encoding

- Bit i represents the value 2
 - Bits typically written from most to least significant (i.e., $2^3 2^2 2^1 2^0$)
 - This is the same encoding we saw last time!
 - No representation of negative numbers

$$1 = 0.2^{3} + 0.2^{2} + 0.2^{1} + 1.2^{0} = [0001]$$

$$5 = 4 + 1 = 0.2^{3} + 1.2^{2} + 0.2^{1} + 1.2^{0} = [0101]$$

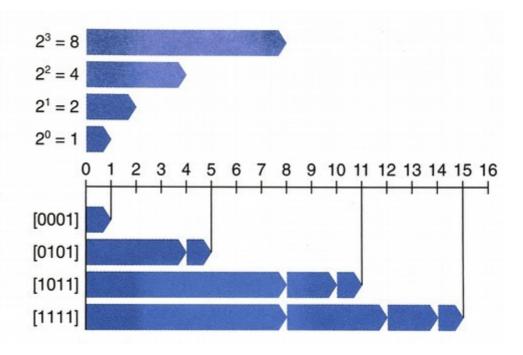
$$11 = 8 + 2 + 1 = 1.2^{3} + 0.2^{2} + 1.2^{1} + 1.2^{0} = [1011]$$

$$15 = 8 + 4 + 2 + 1 = 1.2^{3} + 1.2^{2} + 1.2^{1} + 1.2^{0} = [1111]$$

Unsigned integer encoding

- Textbook's notation
 - Each bar represents a bit
 - Add together bars to represent the contributions of each bit value to the overall value

Figure 2.12 Unsigned number examples for w = 4. When bit i in the binary representation has value 1, it contributes 2^i to the value.



Signed integer encodings

- Sign magnitude
 - Most natural/intuitive but hardest to implement
- Ones' complement
 - Cleaner arithmetic but less intuitive
- Two's complement
 - Cleanest arithmetic but most complicated
 - Most modern signed integer types use this!

Sign magnitude

Sign magnitude

- Interpret most-significant bit as a sign bit
- Interpret remaining bits as unsigned number x (the magnitude)
 - If negative, absolute value is x
- To negate: flip the sign bit
- Disadvantages:
 - Two zeros: -0 and +0 [1000 and 0000]
 - Less useful for arithmetic because the sign bit has no relationship with the magnitude--cannot use unsigned arithmetic logic!

$$0 \ 011 = 3$$
 $1 \ 011 = -3$
 $0 \ 111 \ (7)$
 $1 \ 011 \ (-3)$
 $0 \ 111 = 7$

- What is the negation of 10110 in sign magnitude?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

- Which of the following are negative numbers if interpreted as a sign magnitude integer?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

Ones' complement

- Ones' complement
 - Interpret most-significant bit as a sign bit
 - Interpret ALL bits as unsigned integer x
 - If negative, absolute value is [11111...1] x
 - To negate: **flip all the bits** (binary NOT)
 - Disadvantages:
 - Still have two representations of zero (1111 and 0000)
 - Also, less useful for arithmetic than two's complement
 - Must "end-around carry" to preserve results

```
1

0 011 = 3

1 100 = -3

0 111 (7)

1 100 (-3)

10 011

+1 (end-around carry)

0 100
```

- What is the negation of 10110 in ones' complement?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

- Which of the following are negative numbers if interpreted as a ones' complement integer?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

Two's complement

- Two's complement
 - Interpret most-significant bit as a sign bit
 - Interpret ALL bits as unsigned integer x
 - If negative, absolute value is $2^{N} x$ where N is the number of bits
 - To negate: **subtract value from 2**^N where N is the number of bits
 - One zero; positive numbers wrap to negative ones halfway through

2's Comp.		<u>Unsigned</u>	T 2 ^w
-1	1111	15	
-7	 1001	9	+2 ^{w-1} T +2 ^{w-1} Unsigned
-8	1000	8	
7	0111 	7	Two's complement 0
1	0001	1	negative
0	0000	0	negative numbers -2 ^{w-1}

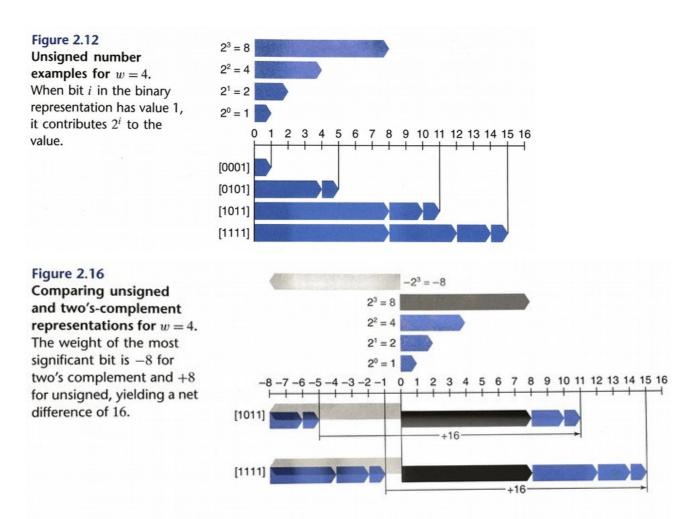
Two's complement

- Two's complement advantage: uses unsigned arithmetic logic
 - (ignore carries out of the sign bit for now)

$$0011 = 3$$
 $0111 (7)$
 1100 $1101 (-3)$
 $0111 = 7$

Two's complement

- Alternate interpretation: value of most significant bit is negated
 - i.e., start at most negative number and build back up towards zero



Two's complement trick

- Alternate way to negate in two's complement
 - Flip the bits (binary NOT) then add one

Ex:
$$5 = 0101 \rightarrow (binary NOT) \rightarrow 1010 \rightarrow (add one) \rightarrow 1011 = -5 (-8 + 2 + 1)$$

Aside: Why does this work? The sum of a number x and \sim x is all ones (or 2^N -1 where N is the number of bits), so \sim x can be expressed as 2^N -1 - x. Because negating x in two's complement is equivalent to subtracting x from 2^N , if we add one to \sim x the results are equal:

$$\sim x + 1 = (2^{N}-1 - x) + 1 = 2^{N} - x$$

- What is the negation of 10110 in two's complement?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

- Which of the following are negative numbers if interpreted as a two's complement integer?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

Ones' vs. Two's

- Ones' complement
 - Interpret all bits as unsigned integer x
 - Value is [11111...1] x
 - I.e., the complement with respect to ones
- Two's complement
 - Interpret all bits as unsigned integer x
 - Value is $2^{N} x$ where N is the number of bits
 - I.e., the complement with respect to a power of two

Caution: language technicalities

- Ones' complement and two's complement are both an operation and an encoding
 - E.g., "perform two's complement" vs "the number is stored in two's complement"
- The operation represents the action necessary to negate a number in that encoding.
 - E.g., performing two's complement (ones' complement and add one) negates a number in two's complement encoding
- If you have a value in a particular encoding:
 - If the sign bit is not set, it's a positive number
 - If it is set, perform the operation to recover the positive value

We will avoid using the operation terminology in this course!

Integer encodings

- Information = Bits + Context
 - What does "1011" mean? It depends!

Unsigned: 11
Sign magnitude: -3
Ones' complement: -4
Two's complement: -5

Comparison

- We'll see one more signed integer encoding next week: "offset binary" / "biased" / "excess"
 - For now, here's a comparison (for 1-byte integers):

<u>Binary</u>	<u>Unsigned</u>	<u>Sign Mag</u>	<u>Ones' C</u>	Two's C	<u> 0ffset-127</u>
1111 1111	255	-127	-0	-1	128
1111 1110	254	-126	-1	-2	127
1000 0001	129	-1	-126	-127	2
1000 0000	128	-0	-127	-128	1
0111 1111	127	127	127	127	0
0111 1110	126	126	126	126	-1
 0000 0001 0000 0000	1 0	 1 0	 1 0	 1 0	-126 -127

- Which of the following are guaranteed to be "safe" (i.e., the value will always be preserved)?
 - A) Smaller unsigned → larger unsigned
 - B) Smaller two's comp. → larger two's comp.
 - C) Larger → smaller (unsigned or two's comp.)
 - D) Unsigned → two's comp.
 - E) Two's comp. → unsigned

Conversions

- Smaller unsigned → larger unsigned
 - Safe; zero-extend to preserve value

- $0101 (5) \rightarrow 0000 0101 (5)$
- Smaller two's comp. \rightarrow larger two's comp. $\underline{\mathbf{1}}^{101}$ (-3) \rightarrow $\underline{\mathbf{1}}^{111}$ 1101 (-3)
 - Safe; sign-extend to preserve value

- Larger → smaller (unsigned or two's comp.)
 - Overflow if new type isn't large enough to fit (truncate)
- Unsigned → two's comp.
 - Overflow if first bit is non-zero (otherwise, no change)
- Two's comp. → unsigned
 - Overflow if value is negative (otherwise, no change)
- $0101 (5) \rightarrow 0101 (5)$ $1101 (-2) \rightarrow 1101 (13)$

 $0101 (5) \rightarrow 0101 (5)$

 $1101 (13) \rightarrow 1101 (-3)$