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Question

● What will be the output of this C program?

● A) “Equal!”
● B) “Not equal!”
● C) Neither of the above

#include <stdio.h>
int main() {
    double a = 1e20;
    double b = -a;
    double c = 3.14;
    if (((a+b) + c) == (a + (b+c))) {
        printf("Equal!\n");
    } else {
        printf("Not equal!\n");
    }
    return 0;
}



  

Question

● Which of the following versions of a “matrix 
copy” routine will run the fastest?
– A)

– B)

– C) Neither; they will always run at approximately the 
same speed.

    for (int i = 0; i < 2048; i++) {
        for (int j = 0; j < 2048; j++) {
            dst[i][j] = src[i][j];
        }
    }

    for (int j = 0; j < 2048; j++) {
        for (int i = 0; i < 2048; i++) {
            dst[i][j] = src[i][j];
        }
    }



  

What's happening?

● Something about our mental model of these programs 
does not match the system on which we're running them.

 



  

Systems

● What is a “system?”
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● What is a “system?”
– Set of interacting components
– More than the sum of its parts

ComputerJet engine
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Systems

● A computer system consists of multiple 
hardware and software components that work 
together to run user applications.
– We use complex computer systems every day
– Our goal: peel back (some of) the complexity

● See (some of) what’s “under the hood”



  

Systems

● What is a process? What is a file?
– These are examples of abstraction; "fake" views of reality 

that reduce complexity for users
– Key ideas: ignore details and focus on interfaces
– Especially important in large, complicated systems
– Understanding abstractions can improve your ability to use 

them effectively

abstraction



  

Course Objectives

● Explain machine-level representation of data and code
● Summarize the architecture of a computer
● Explain how complex systems are built from simple 

components
● Translate high-level code into assembly and machine language
● Write code to emulate the functionality of a computer

● Cultivate a sense of control over computer systems
● Gain an appreciation for software development tools
● Develop a sense of play when writing code
● Appreciate the complexity of systems-level software



  

Systems courses

● CS 261 units:
– C and Linux (3 weeks)
– Binary Representations (2-3 weeks)
– Assembly and Machine Code (2-3 weeks)
– Computer Architecture (3 weeks)
– Operating Systems Concepts (3 weeks)

CS 261
Computer Systems I

CS 361
Computer Systems II

CS 450
Operating Systems

CS 432
Compilers

CS 470
Parallel & Distributed

Systems

CS 456
CPU Architecture

Fundamentals of digital, 
single-process systems

Multi-process systems
and networking

In-depth study of a particular 
kind of complex system

CS 455
Adv. Networking



  

CS 261

● What this course is NOT:
– Programming 101 – I will assume you can program

● However, we will spend a few weeks learning C

– Electronics 101 – we won’t be going THAT deep
● If you’re interested, see PHYS 140/150 or 240/250 then 371/372

– Linux 101 – but you have the Unix Users Group
● Weekly meetings: Wed, 6:30pm, in King Hall 236
● https://www.jmunixusers.org

https://www.jmunixusers.org/


  

CS 261

● This is not an “easy” course
– But you can succeed!
– I will set you up for success

● Commit to prioritize this course
– Be prepared to read and work a lot
– Don't be afraid to experiment
– Practice a growth mindset: “I can’t do it YET”
– Take advantage of office hours and Piazza
– Start projects early and ask questions



  

Semester-specific info

● The remaining slides are specific to Spring 2024
– All slides are posted on the website (calendar page)

● Health and safety concerns
– If you test positive for COVID or the flu, or are coughing 

and/or sneezing frequently, please stay home
● Contact me ASAP regarding missed class

– If you feel ill but well enough to attend class (and are NOT 
coughing/sneezing frequently), please consider wearing a 
surgical or N95/KN95 mask to protect others

– These policies may change
● Changes will be announced via Canvas message



  

Textbooks

● Required textbook: “Computer Systems”
– “CS:APP” textbook from Carnegie-Mellon
– A practical, example-filled introduction
– Electronic rental available via RedShelf
– Reserve copy at the Rose library

● Recommended book: "The C Programming Language"
– Brian Kernighan and Dennis Ritchie (creator of C)
– This is “the book” about C (we’ll refer to it as “CPL”)
– Scanned excerpts on Canvas (do not redistribute!)
– Reserve copy at the Rose library

Important: Readings are listed on their associated quiz



  

Course Grades

Quizzes and Labs 25%

Programming Projects 25%

Module Tests 15%

Exams 35%

● Quizzes and labs are formative
– Designed to help you learn

● Tests/exams are summative
– Designed to assess what you have learned

● Caution: don’t trust your overall grade in Canvas until after the midterm!
● Projects are both

– Designed to help you learn C and reinforce other course concepts
– Also designed to assess whether you are ready for CS 361



  

Course Components
● Public website (w3.cs.jmu.edu/lam2mo/cs261)

– Syllabus, calendar, project descriptions, and resources
– Links to lecture videos (YouTube, already posted)

● Most recorded for Fall 2020; all still relevant this year

– Links to slides (Fall 2022 versions posted)
● Some Spring 2024 revisions may be posted as well if needed

● Canvas course
– Quizzes, lab submissions, and module tests
– Grades and private files (e.g., lab solutions)
– Access to Piazza Q&A

● Student server (stu.cs.jmu.edu)
– Project development and submission

● Piazza
– Q&A (especially re: projects)

Make sure you can 
access ALL of these!



  

Course Design

● This is a flipped class
– Research shows active learning is more effective than passive learning
– Ahead of time: watch lecture, do reading, take quiz
– During class: review last lab and work on new lab in small groups
– Outside class: work on projects, take module tests, and study for exams

Video playlists, quizzes, and labs all have a common tag (the first day is “01”)



  

Class Policies

● Class attendance is necessary and expected
– We will be completing labs most class periods
– Find a group (2-4 people) to work with consistently
– Use a name card for the first half of the of semester

● Every person should fill out a separate copy of the lab
– Work together and check each other
– Ask for help when you are stuck or want to confirm something 

(your goal is to get to the right answers by the end of class)
– Getting “stuck” or confused is intended; it’s how you learn!
– Resist the urge to “speedrun” the labs or to work solo



  

Class Policies

● Submit as PDF on Canvas/Gradescope when done
– Scan as a black-and-white PDF
– Instructions: https://wiki.cs.jmu.edu/student/canvas/start
– DO NOT submit raw photos
– Double-check to make sure it “went through” and that it is legible
– Submit before leaving class even if you’re not done yet

● Guarantees at least partial credit if you don’t finish or forget to submit later

● Labs are “lightly graded” (w/o individual mistakes marked)
– Solutions will be posted on Canvas (under Files→Lab Solutions)
– Bring your solution to the next class for review
– Come to office hours if you have further questions

https://wiki.cs.jmu.edu/student/canvas/start


  

Course Policies

● The projects in this course are VERY important!
– One purpose of this course is to ensure you are ready to 

tackle harder projects in CS 361 and the system electives

● Projects are individual and mandatory
– A “good faith” submission shows evidence of significant 

work and investment in writing a solution
– A good faith submission gets you an “F” (25 points) 

instead of a zero (!!), in terms of a numeric grade
● Doing at least this on every project is required to pass the class



  

Course Policies

● The JMU Honor Code applies on ALL assignments
– Violations may be sent to the honor council
– See relevant section in the syllabus
– All online quizzes and module tests must be completed on 

your own with no assistance aside from what is allowed in the 
assignment description in Canvas

● All submitted labs must represent YOUR work
– You will work in groups to discuss the answers
– By submitting a PDF on Canvas, you are asserting that these 

answers are YOUR answers and that you understand WHY 
you have answered the way you have



  

Course Policies

● All submitted project code must be YOUR work entirely
– You may talk with others to discuss general approaches (in fact, I 

encourage this; use pseudocode if necessary)
– However, one goal of the projects in this course is to develop 

individual competency in C programming, so you may NOT share 
code with anyone who is not a TA or CS 261 instructor

– This includes letting someone examine or take a screenshot of your 
code, or “talking it through” with them line-by-line

– This also includes using an AI-assist tool (e.g., Github Copilot)
– If you co-work, sit such that you can’t see each other’s screens
– Do not store your solution in a public online code repository
– If you have questions about this, please ask!



  

Course Policies

● There are a total of four sections of CS 261
– Two Lam sections and two Aboutabl sections
– Some course materials are shared
– You are welcome to study with students from other 

sections, but you must attend and submit 
assignments to the section you are registered for

– DO NOT assume assignments are identical or that 
due dates align



  

Office hours

● My drop-in office hours are posted on Canvas
– In person: King Hall 227

● If I’m unavailable when you arrive, scan the QR code by my door
● You’ll join the same queue as virtual attendees and I will call you 

when I’m available (you’ll leave a cell number as part of sign-up)

– Virtual via Zoom: bit.ly/lam-office-hours-sp24
● This is sometimes preferred for coding questions
● Be prepared to share your screen, and turn your webcam on!

● CS TAs: in-person and virtual office hours: bit.ly/CS-TAs
– 261-specific TAs TBD

https://bit.ly/lam-office-hours-sp24
https://bit.ly/CS-TAs


  

TODOs in the next few days

● If you haven’t already:
– Take welcome survey on Canvas
– Take syllabus quiz on Canvas (due Friday)
– Read CS:APP Ch. 1 and take Quiz 01 (due Friday)

● Before class on Thursday:
– Review these slides and the syllabus and come with questions
– Watch “Command line and C compilation” lecture videos
– Read 02-CPL excerpts (on Canvas under Files→Readings)
– Take Quiz 02 (due Wednesday)
– Make sure you can log into stu

● Instructions at the top of Thursday’s lab: w3.cs.jmu.edu/lam2mo/cs261/02-cmd_line.html

– Make sure you can access Piazza
– Skim the project guide and Project 0 description (on website)

https://w3.cs.jmu.edu/lam2mo/cs261/02-cmd_line.html


  

Intro lab (Tuesday)

● Material from Chapter 1
– Front page: Computer Organization
– Back page: C Compilation

● Submit as PDF on Canvas when done
– Scan as a black-and-white PDF
– Instructions: https://wiki.cs.jmu.edu/student/canvas/start
– DO NOT submit raw photos, and double-check for legibility!
– Let the instructor know after you submit for verification
– Once you have verified a satisfactory submission, please feel 

free to leave – I’ll see you on Thursday!

https://wiki.cs.jmu.edu/student/canvas/start


  

Closing exhortations

● Take care of yourself
– And if you can, someone else
– Build (or reconnect with) a support network
– Protect your boundaries
– Carve out time to disconnect and rest
– Talk to someone if things start getting overwhelming

● Have a great semester!
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