

CS 240
Fall 2015

Mike Lam, Professor

Priority Queues and Heaps

Priority Queues

● FIFO abstract data structure w/ priorities

– Always remove item with highest priority

● Store key (priority) with value

– Store (key, value) tuples as items

– Goal: retrieve/remove the lowest key value (highest priority)

– Usually ignore the values during discussion for simplicity

● Priority Queue ADT operations:
– add(k,v)

– remove_min()

– min()

– is_empty()

– size()

Priority Queues

● First idea: store them in an unordered list

● Second idea: store them in an ordered list

Priority Queues

● First idea: store them in an unordered list

– add() is O(1) and remove_min() is O(n)

– The latter has to find the minimum element

● Second idea: store them in an ordered list

– add() is O(n) and remove_min() is O(1)

– The former has to insert the element in order

● Can we do better?

Priority Queues

● First idea: store them in an unordered list

– add() is O(1) and remove_min() is O(n)

– The latter has to find the minimum element

● Second idea: store them in an ordered list

– add() is O(n) and remove_min() is O(1)

– The former has to insert the element in order

● Can we do better?

– We could use skip lists or AVL trees
● Skip lists require O(n log n) extra space
● AVL trees require O(n) extra space
● Plus, they're so complicated!

Priority Queues

● Basic idea: use binary trees

– Dense binary trees are limited in height by O(log n)

– If we can devise a scheme to add and remove elements from a
binary tree in a way that is guaranteed to visit each level only
once, we can insert and remove in O(log n) time

– In order to do this, we have to impose some kind of order on the
binary tree

– But we don't need full BSTs

Image taken from
http://en.wikipedia.org/wiki/Binary_heap

Heaps

● Heap: binary tree structure with heap-order property

– The key of every non-root node is greater than or equal to the key
of that node's parent

– i.e., the values increase as you move down the tree

● For the sake of efficiency, we also want the tree to be
complete

– All levels except the lowest have the maximum number of nodes
possible

– The last level's nodes are as far to the left as possible

– The height of a complete tree with n items is floor(log n)

– Careful! This is unrelated to being full or proper

Heaps

● Heaps can be minimum-based or maximum-based

● For the latter, the heap-order property is reversed:

– The key of every non-root node is less than or equal to the
key of that node's parent

Potential Confusion

● Priority queues vs. heaps

– Priority queue is an ADT, heaps are an implementation

– Similar to regular queues (ADT) vs. arrays (implementation)

– Or to sets (ADT) vs. arrays or skip lists (implementations)

● Heap data structure vs. "the heap"

– "The heap" is a common name for a pool of memory available
for dynamic allocation

– Usually managed by the operating system

– Often grows upward in memory while the stack grows
downward

Heap Operations

● Adding an item

– Add at leftmost open position on the lowest level
● Create a new level if the lowest level is full

– Swap the new item upward to maintain the heap-order
property

● Start at the new node
● If the current node's key is smaller than its parent's key, swap

them and move up, repeating the process as necessary
● Called up-heap bubbling

– also: sifting up, or percolating up, etc.
– not really related to bubble sort!

Heap Operations

● Removing minimal item

– Remove root

– Move the last item (rightmost item on the lowest level) into
the root position

– Swap the new root downward to maintain the heap-order
property

● Start at the new root
● If the key of either child is smaller than the current node's key,

swap the current node with the minimal child node and move
down, repeating the process as necessary

● Called down-heap bubbling, sifting down, or trickling down

Heap Operations

● Adding an item is O(log n)

– May have to swap elements all the way up the heap

● Removing the minimum key is O(log n)

– May have to swap elements all the way down the heap

● These are worst case bounds for a linked-tree implementation

– Complication: keeping track of the last element

– Also have to keep parent pointers

● These are amortized average case bounds for an array-based
implementation

– Most common method

Heap Implementation

● Because heaps are complete trees, there is a very convenient
array-based representation (no extra space required!)

● Imagine flattening out the tree by doing a breadth-first traversal

● Concept: level numbering

– Assign each node in the tree an index

– The root is index 0

– The left subchild of node k is index 2k+1

– The right subchild of node k is index 2k+2

– The parent of node k is at index floor((k-1) / 2)

– The last element is at index size-1

– The next open slot is at index size

Heap Implementation

● For complete trees, this scheme allows us to lay out the tree
in a contiguous linear array

– O(1) access to the root

– We still have O(1) access to parents and children of a given index

– We also have O(1) access to the last element in the heap as long
as we track the size of the heap

Next Time

● Using heaps for sorting

– “Heap sort”

http://visualgo.net/heap.html

http://visualgo.net/heap.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

