CS 240
Fall 2015

Mike Lam, Professor

Priority Queues and Heaps



I Priority Queues

 FIFO abstract data structure w/ priorities
— Always remove item with highest priority
o Store key (priority) with value

— Store (key, value) tuples as items
— Goal: retrieve/remove the lowest key value (highest priority)
— Usually ignore the values during discussion for simplicity

e Priority Queue ADT operations:
- add(k,v)
- remove_min()
- min()
- 1s_empty()
- size()



e First idea; store them In an unordered list
e Second idea: store them In an ordered list



I Priority Queues

e First idea: store them in an unordered list
— add() is O(1) and remove_min() is O(n)
— The latter has to find the minimum element
e Second idea: store them in an ordered list
— add() is O(n) and remove_min() is O(1)
— The former has to insert the element in order
e Can we do better?



I Priority Queues

e First idea: store them in an unordered list
- add() is O(1) and remove_min() is O(n)
— The latter has to find the minimum element
e Second idea: store them in an ordered list
— add() i1s O(n) and remove_min() is O(1)
— The former has to insert the element in order
e Can we do better?

— We could use skip lists or AVL trees

o SKip lists require O(n log n) extra space
e AVL trees require O(n) extra space
* Plus, they're so complicated!



I Priority Queues

e Basic idea: use binary trees

Dense binary trees are limited in height by O(log n)

If we can devise a scheme to add and remove elements from a
binary tree in a way that is guaranteed to visit each level only
once, we can insert and remove in O(log n) time

In order to do this, we have to impose some kind of order on the
binary tree

But we don't need full BSTs o

Image taken from e @

http://en.wikipedia.org/wiki/Binary_heap



I Heaps

e Heap: binary tree structure with heap-order property

— The key of every non-root node is greater than or equal to the key
of that node's parent

- l.e., the values increase as you move down the tree

* For the sake of efficiency, we also want the tree to be
complete

— All levels except the lowest have the maximum number of nodes
possible

— The last level's nodes are as far to the left as possible
— The height of a complete tree with n items is floor(log n)
— Careful! This is unrelated to being full or proper



I Heaps

 Heaps can be minimum-based or maximum-based
* For the latter, the heap-order property is reversed:

— The key of every non-root node is less than or equal to the
key of that node's parent




I Potential Confusion

* Priority queues vs. heaps

— Priority queue is an ADT, heaps are an implementation
— Similar to regular queues (ADT) vs. arrays (implementation)
— Or to sets (ADT) vs. arrays or skip lists (implementations)

 Heap data structure vs. "the heap"

— "The heap" is a common name for a pool of memory available
for dynamic allocation

— Usually managed by the operating system

— Often grows upward in memory while the stack grows
downward



I Heap Operations

e Adding an item

— Add at leftmost open position on the lowest level
e Create a new level if the lowest level is full

— Swap the new item upward to maintain the heap-order
property
e Start at the new node

e If the current node's key is smaller than its parent's key, swap
them and move up, repeating the process as necessary

e Called up-heap bubbling

— also: sifting up, or percolating up, etc.
— not really related to bubble sort!



I Heap Operations

 Removing minimal item

— Remove root

— Move the last item (rightmost item on the lowest level) into
the root position

— Swap the new root downward to maintain the heap-order
property

Start at the new root

If the key of either child is smaller than the current node's key,
swap the current node with the minimal child node and move
down, repeating the process as necessary

Called down-heap bubbling, sifting down, or trickling down



I Heap Operations

Adding an item is O(log n)
- May have to swap elements all the way up the heap
Removing the minimum key is O(log n)

— May have to swap elements all the way down the heap
These are worst case bounds for a linked-tree implementation

— Complication: keeping track of the last element
— Also have to keep parent pointers

These are amortized average case bounds for an array-based
Implementation

— Most common method



I Heap Implementation

 Because heaps are complete trees, there is a very convenient
array-based representation (no extra space required!)

e Imagine flattening out the tree by doing a breadth-first traversal
e Concept: level numbering

— Assign each node in the tree an index

— The root is index O

— The left subchild of node k is index 2k+1

— The right subchild of node k is index 2k+2

— The parent of node Kk is at index floor((k-1) / 2)
— The last element is at index size-1

— The next open slot is at index size



I Heap Implementation

 For complete trees, this scheme allows us to lay out the tree
In a contiguous linear array
— O(1) access to the root
— We still have O(1) access to parents and children of a given index

— We also have O(1) access to the last element in the heap as long
as we track the size of the heap



e Using heaps for sorting

- "Heap sort”

http://visualgo.net/heap.html


http://visualgo.net/heap.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

