CS 240 Fall 2015

Mike Lam, Professor

Priority Queues and Heaps

- FIFO abstract data structure w/ priorities
 - Always remove item with highest priority
- Store key (priority) with value
 - Store (key, value) tuples as items
 - Goal: retrieve/remove the lowest key value (highest priority)
 - Usually ignore the values during discussion for simplicity
- Priority Queue ADT operations:

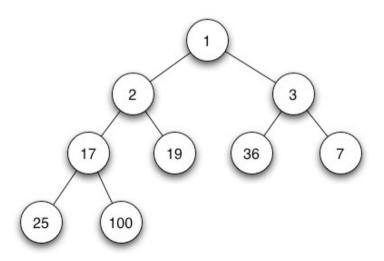
```
- add(k,v)
- remove_min()
- min()
- is_empty()
- size()
```

- First idea: store them in an unordered list
- Second idea: store them in an ordered list

- First idea: store them in an unordered list
 - add() is O(1) and remove_min() is O(n)
 - The latter has to find the minimum element
- Second idea: store them in an ordered list
 - add() is O(n) and remove_min() is O(1)
 - The former has to insert the element in order
- Can we do better?

- First idea: store them in an unordered list
 - add() is O(1) and remove_min() is O(n)
 - The latter has to find the minimum element
- Second idea: store them in an ordered list
 - add() is O(n) and remove_min() is O(1)
 - The former has to insert the element in order
- Can we do better?
 - We could use skip lists or AVL trees
 - Skip lists require O(n log n) extra space
 - AVL trees require O(n) extra space
 - Plus, they're so complicated!

- Basic idea: use binary trees
 - Dense binary trees are limited in height by O(log n)
 - If we can devise a scheme to add and remove elements from a binary tree in a way that is guaranteed to visit each level only once, we can insert and remove in O(log n) time
 - In order to do this, we have to impose some kind of order on the binary tree
 - But we don't need full BSTs

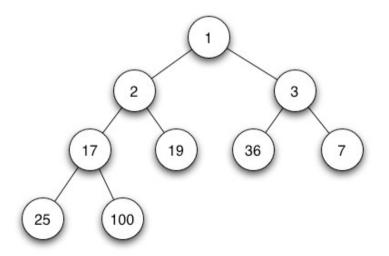


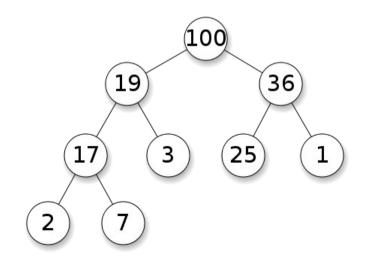
Heaps

- *Heap*: binary tree structure with *heap-order property*
 - The key of every non-root node is greater than or equal to the key of that node's parent
 - i.e., the values increase as you move down the tree
- For the sake of efficiency, we also want the tree to be complete
 - All levels except the lowest have the maximum number of nodes possible
 - The last level's nodes are as far to the left as possible
 - The height of a complete tree with n items is floor(log n)
 - Careful! This is unrelated to being full or proper

Heaps

- Heaps can be minimum-based or maximum-based
- For the latter, the heap-order property is reversed:
 - The key of every non-root node is less than or equal to the key of that node's parent





Potential Confusion

- Priority queues vs. heaps
 - Priority queue is an ADT, heaps are an implementation
 - Similar to regular queues (ADT) vs. arrays (implementation)
 - Or to sets (ADT) vs. arrays or skip lists (implementations)
- Heap data structure vs. "the heap"
 - "The heap" is a common name for a pool of memory available for dynamic allocation
 - Usually managed by the operating system
 - Often grows upward in memory while the stack grows downward

Heap Operations

- Adding an item
 - Add at leftmost open position on the lowest level
 - Create a new level if the lowest level is full
 - Swap the new item upward to maintain the heap-order property
 - Start at the new node
 - If the current node's key is smaller than its parent's key, swap them and move up, repeating the process as necessary
 - Called up-heap bubbling
 - also: *sifting up*, or *percolating up*, etc.
 - not really related to bubble sort!

Heap Operations

- Removing minimal item
 - Remove root
 - Move the last item (rightmost item on the lowest level) into the root position
 - Swap the new root downward to maintain the heap-order property
 - Start at the new root
 - If the key of either child is smaller than the current node's key, swap the current node with the minimal child node and move down, repeating the process as necessary
 - Called down-heap bubbling, sifting down, or trickling down

Heap Operations

- Adding an item is O(log n)
 - May have to swap elements all the way up the heap
- Removing the minimum key is O(log n)
 - May have to swap elements all the way down the heap
- These are worst case bounds for a linked-tree implementation
 - Complication: keeping track of the last element
 - Also have to keep parent pointers
- These are amortized average case bounds for an array-based implementation
 - Most common method

Heap Implementation

- Because heaps are complete trees, there is a very convenient array-based representation (no extra space required!)
- Imagine flattening out the tree by doing a breadth-first traversal
- Concept: level numbering
 - Assign each node in the tree an index
 - The root is index 0
 - The left subchild of node k is index 2k+1
 - The right subchild of node k is index 2k+2
 - The parent of node k is at index floor((k-1)/2)
 - The last element is at index size-1
 - The next open slot is at index size

Heap Implementation

- For complete trees, this scheme allows us to lay out the tree in a contiguous linear array
 - O(1) access to the root
 - We still have O(1) access to parents and children of a given index
 - We also have O(1) access to the last element in the heap as long as we track the size of the heap

Next Time

- Using heaps for sorting
 - "Heap sort"

http://visualgo.net/heap.html