

CS240

Mike Lam, Professor

Dynamic Arrays

Computer Memory

● Lowest level: sequence of bytes

● Each byte has a 32-bit or 64-bit address

● Every byte is equally easy to access

– "Random access" memory

... ...

0x
80
0a
d0

0x
80
0a
d1

0x
80
0a
d2

0x
80
0a
d3

...

Arrays

● Finite sequence of uniformly-sized segments

– Starting address, item size (in bytes), item count (fixed)

● Each location is a cell located at a zero-based index
offset from the start

– Address of cell i is start+(i*item_size)

st
ar
t

0 1 2 3

item_size = 4, item_count = 3

index:

cells

Array Allocation

● Stack (C)
– int my_array[n]

● Heap (C)
– my_array = (int*)malloc(n*sizeof(int))

● Heap (Java)
– my_array = new int[n]

Dynamic Arrays

● Goal: Add items to an array

● Issue: Arrays are fixed-length

Dynamic Arrays

● Goal: Add items to an array

● Issue: Arrays are fixed-length

● Naive solution: Resize the array's memory

– Problem: no guarantee that we can do this!

Dynamic Arrays

● Goal: Add items to an array

● Issue: Arrays are fixed-length

● Naive solution: Resize the array's memory

– Problem: no guarantee that we can do this!

● More robust solution: Dynamic arrays

– Allocate more space than currently needed

– Re-allocate and copy when the original size is
exceeded

Dynamic Arrays

0 1 2 3

original:

Dynamic Arrays

1

0 1 2 3

original:

Dynamic Arrays

1 1

0 1 2 3

original:

Dynamic Arrays

1 1 2

0 1 2 3

original:

Dynamic Arrays

1 1 2 3

0 1 2 3

original:

Dynamic Arrays

1 1 2 3

0 1 2 3

original: 5

Dynamic Arrays

0 1 2 3

new_arr:

1 1 2 3

0 1 2 3

original:

4 5 6 7

Dynamic Arrays

0 1 2 3

new_arr:

1 1 2 3

0 1 2 3

original:

4 5 6 7

Dynamic Arrays

1 1 2 3

0 1 2 3

new_arr:

1 1 2 3

0 1 2 3

original:

4 5 6 7

Dynamic Arrays

1 1 2 3

0 1 2 3

new_arr:

4 5 6 7

Dynamic Arrays

1 1 2 3

0 1 2 3

new_arr: 5

4 5 6 7

Dynamic Arrays

● State information:

– array: array pointer

– capacity: current maximum element count

– size: current element count

● Invariant: capacity >= size

Dynamic Arrays

● How big should we initialize new arrays?

– For now let's make it big enough for a single
element

● How much extra space should we allocate
when we need to resize it?

– For now, let's assume we double the size

Dynamic Arrays

typedef struct dynarray {
 int *array;
 size_t capacity;
 size_t size;
} dynarray_t;

void dynarray_append(dynarray_t *a, int value)
{
 if ((a->size + 1) > a->capacity) {

 // allocate new storage array
 int *new_array = (int*)malloc(sizeof(int) * (a->capacity*2));
 // TODO: check new_array for NULL

 // copy old elements over
 for (int i = 0; i < a->size; i++) {
 new_array[i] = a->array[i];
 }

 // deallocate old storage array
 free(a->array);

 // update state information
 a->array = new_array;
 a->capacity *= 2;
 }

 // add new element
 a->array[a->size++] = value;
}

Dynamic Arrays

● Big-O analysis

– Create empty array:

– Access element:

– Modify element:

– Get length:

– Append element: ???

Dynamic Arrays

● Big-O analysis

– Create empty array: O(1)

– Access element: O(1)

– Modify element: O(1)

– Get length: O(1)

– Append element: ???
● Let's measure cost in "copy operations"

Dynamic Arrays

● Big-O analysis

– Create empty array: O(1)

– Access element: O(1)

– Modify element: O(1)

– Get length: O(1)

– Append element:
● If capacity > size: O(1)
● If capacity == size: O(n)

Dynamic Arrays

● Big-O analysis

– Create empty array: O(1)

– Access element: O(1)

– Modify element: O(1)

– Get length: O(1)

– Append element:
● If capacity > size: O(1)
● If capacity == size: O(n)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

cap 1 2 4 4 8 8 8 8 16 16 16 16 16 16 16 16 32

ops 1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1 17

n

ops

Dynamic Arrays

● Can we argue that the average cost of the append
operation is O(1), despite its occasional O(n) cost?

● Yes! Use amortized analysis

– Sometimes called the "accounting method"

● Basic idea: charge algorithm $$ to perform operations

– Overcharge for some (inexpensive) operations

– Use saved $$ to pay for expensive operations

– Show that the total $$ spent is O(n) for n operations

– Thus, each operation can be considered O(1)

Amortized Analysis

● Intuition: Cost of rare expensive operations
grows inversely proportionally to frequency

n

ops

Amortized Analysis

● Intuition: Cost of rare expensive operations
grows inversely proportionally to frequency

n

ops

Amortized Analysis

● Intuition: Cost of rare expensive operations
grows inversely proportionally to frequency

n

ops

Amortized Analysis

● Idea: Charge extra for O(1) insertions to “save
up” and “pay for” the O(n) insertions

Charge extra here

Amortized Analysis

● Idea: Charge extra for O(1) insertions to “save
up” and “pay for” the O(n) insertions

Charge extra here to pay for these

Amortized Analysis

● How much extra do we charge?

– Let's try charging 1 extra operation

– Total of 2 operations per append

Amortized Analysis

● How much extra do we charge?

Amortized Analysis

● How much extra do we charge?

Need 1; have 2; save one!

Amortized Analysis

● How much extra do we charge?

Need 2; have 2

Amortized Analysis

● How much extra do we charge?

Need 3; have 2+1=3

Amortized Analysis

● How much extra do we charge?

Need 1; have 2; save one!

Amortized Analysis

● How much extra do we charge?

Need 5; have 2+1=3 !!

Amortized Analysis

● How much extra do we charge?

Need 1, have 2; save one each!

Amortized Analysis

● How much extra do we charge?

Need 9, have 2+3=5 !!

Amortized Analysis

● How much extra do we charge?

Need 17, have 2+7=9 !!

Amortized Analysis

● How much extra do we charge?

– Let's try charging 2 extra operations

– Total of 3 operations per append

Amortized Analysis

● How much extra do we charge?

Need <=3; have 3

Amortized Analysis

● How much extra do we charge?

Need 1; have 3; save two!

Amortized Analysis

● How much extra do we charge?

Need 5; have 3+2=5

Amortized Analysis

● How much extra do we charge?

Need 1, have 3; save two each!

Amortized Analysis

● How much extra do we charge?

Need 9, have 3+6=9

Amortized Analysis

● How much extra do we charge?

Need 17, have 3+14=17

Amortized Analysis

● How much extra do we charge?

n

assume we're here

n

Amortized Analysis

● How much extra do we charge?

n

n

we'll add another n
elements before the
next "big" operation

n

Amortized Analysis

● How much extra do we charge?

n 2n

at that point we'll
need to move 2n
elements

nn

2n

Amortized Analysis

● How much extra do we charge?

n 2n

2n

n n

so we should charge 2 extra for
each of the n elements in between

Amortized Analysis

● How much extra do we charge?

– If we're doubling the size each time...
● We will need to make 2n copies at the next increase
● We will have n new appends during that period

– So we need to “save up” two extra operations per
cheap append to pay for the expensive appends

– Charge 3 total operations for each append

Amortized Analysis

● Total # of operations to add n items: 3n

– Which is O(n)

● Average operations per append = 3n/n = 3

● More generally: the total # of operations is O(n),
so the amortized cost per append is O(1)

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?

– No! The amount of operations “saved” is always
constant between increases, but the amount of work
done by the capacity increases grows linearly with
the size of the array.

– This actually leads to Ω(n2) total operations for n
appends, instead of O(n) total operations

Amortized Analysis

● Does the same argument apply to a tripling
increase when the capacity is reached?

Amortized Analysis

● Does the same argument apply to a tripling
increase when the capacity is reached?

Amortized Analysis

● Does the same argument apply to a tripling
increase when the capacity is reached?

Amortized Analysis

● Does the same argument apply to a tripling
increase when the capacity is reached?

– Yes! Charge three extra operations instead of two,
and then we will have saved roughly 3n operations
before the next capacity increase.

– Total operations for n appends: 4n ϵ O(n)
● The amortized cost for each append is still O(1)

– In fact, the argument works for any geometric
progression

Amortized Analysis

● Fundamental idea: Overcharge for cheap operations
to “save up” credit for expensive operations

– If the total cost for n operations can be shown to be O(n),
then the average cost for each individual operation is O(1)

● For PA2, you will use a dynamic array to implement
the Set ADT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

