CS240

Mike Lam, Professor

Computer Memory

- Lowest level: sequence of bytes
- Each byte has a 32-bit or 64-bit address
- Every byte is equally easy to access
 - "Random access" memory

Arrays

- Finite sequence of uniformly-sized segments
 - Starting address, item size (in bytes), item count (fixed)
- Each location is a cell located at a zero-based index offset from the start
 - Address of cell i is start+(i*item_size)

Array Allocation

- Stack (C)int my_array[n]
- Heap (C)

```
- my_array = (int*)malloc(n*sizeof(int))
```

- Heap (Java)
 - my_array = new int[n]

- Goal: Add items to an array
- Issue: Arrays are fixed-length

- Goal: Add items to an array
- Issue: Arrays are fixed-length
- Naive solution: Resize the array's memory
 - Problem: no guarantee that we can do this!

- Goal: Add items to an array
- Issue: Arrays are fixed-length
- Naive solution: Resize the array's memory
 - Problem: no guarantee that we can do this!
- More robust solution: Dynamic arrays
 - Allocate more space than currently needed
 - Re-allocate and copy when the original size is exceeded

0 1 2 3 original:

0 1 2 3 original: 1

0 1 2 3 original: 1 1

0 1 2 3 original: 1 1 2

0 1 2 3 original: 1 1 2 3

- State information:
 - array: array pointer
 - capacity: current maximum element count
 - size: current element count
- Invariant: capacity >= size

- How big should we initialize new arrays?
 - For now let's make it big enough for a single element
- How much extra space should we allocate when we need to resize it?
 - For now, let's assume we double the size

```
typedef struct dynarray {
    int *array;
    size t capacity;
    size t size;
} dynarray_t;
void dynarray_append(dynarray_t *a, int value)
    if ((a->size + 1) > a->capacity) {
        // allocate new storage array
        int *new_array = (int*)malloc(sizeof(int) * (a->capacity*2));
        // TODO: check new array for NULL
        // copy old elements over
        for (int i = 0; i < a->size; i++) {
            new_array[i] = a->array[i];
        // deallocate old storage array
        free(a->array);
        // update state information
        a->array = new_array;
        a->capacity *= 2;
    // add new element
    a->array[a->size++] = value;
```

- Big-O analysis
 - Create empty array:
 - Access element:
 - Modify element:
 - Get length:
 - Append element: ???

- Big-O analysis
 - Create empty array: O(1)
 - Access element: O(1)
 - Modify element: O(1)
 - Get length: O(1)
 - Append element: ???
 - Let's measure cost in "copy operations"

- Big-O analysis
 - Create empty array: O(1)
 - Access element: O(1)
 - Modify element: O(1)
 - Get length: O(1)
 - Append element:
 - If capacity > size: O(1)
 - If capacity == size: O(n)

- Big-O analysis
 - Create empty array: O(1)
 - Access element: O(1)
 - Modify element: O(1)
 - Get length: O(1)
 - Append element:
 - If capacity > size: O(1)
 - If capacity == size: O(n)

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
cap	1	2	4	4	8	8	8	8	16	16	16	16	16	16	16	16	32
ops	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17

- Can we argue that the *average* cost of the append operation is O(1), despite its occasional O(n) cost?
- Yes! Use amortized analysis
 - Sometimes called the "accounting method"
- Basic idea: charge algorithm \$\$ to perform operations
 - Overcharge for some (inexpensive) operations
 - Use saved \$\$ to pay for expensive operations
 - Show that the total \$\$ spent is O(n) for n operations
 - Thus, each operation can be considered O(1)

 Intuition: Cost of rare expensive operations grows inversely proportionally to frequency

 Intuition: Cost of rare expensive operations grows inversely proportionally to frequency

 Intuition: Cost of rare expensive operations grows inversely proportionally to frequency

 Idea: Charge extra for O(1) insertions to "save up" and "pay for" the O(n) insertions

 Idea: Charge extra for O(1) insertions to "save up" and "pay for" the O(n) insertions

- How much extra do we charge?
 - Let's try charging 1 extra operation
 - Total of 2 operations per append

Need 1; have 2; save one!

Need 3; have 2+1=3

Need 1; have 2; save one!

Need 1, have 2; save one each!

- How much extra do we charge?
 - Let's try charging 2 extra operations
 - Total of 3 operations per append

Need 1; have 3; save two!

Need 5; have 3+2=5

Need 1, have 3; save two each!

Need 9, have 3+6=9

so we should charge 2 extra for each of the n elements in between

- How much extra do we charge?
 - If we're doubling the size each time...
 - We will need to make 2n copies at the next increase
 - We will have n new appends during that period
 - So we need to "save up" two extra operations per cheap append to pay for the expensive appends
 - Charge 3 total operations for each append

- Total # of operations to add n items: 3n
 - Which is O(n)
- Average operations per append = 3n/n = 3
- More generally: the total # of operations is O(n), so the amortized cost per append is O(1)

- Does the same argument apply to a constant increase when the capacity is reached?
 - No! The amount of operations "saved" is always constant between increases, but the amount of work done by the capacity increases grows linearly with the size of the array.
 - This actually leads to Ω(n²) total operations for n appends, instead of O(n) total operations

- Does the same argument apply to a tripling increase when the capacity is reached?
 - Yes! Charge three extra operations instead of two, and then we will have saved roughly 3n operations before the next capacity increase.
 - Total operations for n appends: $4n \in O(n)$
 - The amortized cost for each append is still O(1)
 - In fact, the argument works for any geometric progression

- Fundamental idea: Overcharge for cheap operations to "save up" credit for expensive operations
 - If the total cost for n operations can be shown to be O(n), then the average cost for each individual operation is O(1)
- For PA2, you will use a dynamic array to implement the Set ADT