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Computer Memory

● Lowest level: sequence of bytes

● Each byte has a 32-bit or 64-bit address

● Every byte is equally easy to access

– "Random access" memory
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Arrays

● Finite sequence of uniformly-sized segments

– Starting address, item size (in bytes), item count (fixed)

● Each location is a cell located at a zero-based index 
offset from the start

– Address of cell i is start+(i*item_size)
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Array Allocation

● Stack (C)
– int my_array[n]

● Heap (C)
– my_array = (int*)malloc(n*sizeof(int))

● Heap (Java)
– my_array = new int[n]



  

Dynamic Arrays

● Goal: Add items to an array

● Issue: Arrays are fixed-length
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Dynamic Arrays

● Goal: Add items to an array

● Issue: Arrays are fixed-length

● Naive solution: Resize the array's memory

– Problem: no guarantee that we can do this!

● More robust solution: Dynamic arrays

– Allocate more space than currently needed

– Re-allocate and copy when the original size is
exceeded



  

Dynamic Arrays
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Dynamic Arrays
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Dynamic Arrays
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Dynamic Arrays

● State information:

– array: array pointer

– capacity: current maximum element count

– size: current element count

● Invariant:  capacity >= size



  

Dynamic Arrays

● How big should we initialize new arrays?

– For now let's make it big enough for a single
element

● How much extra space should we allocate
when we need to resize it?

– For now, let's assume we double the size



  

Dynamic Arrays

typedef struct dynarray {
    int   *array;
    size_t capacity;
    size_t size;
} dynarray_t;

void dynarray_append(dynarray_t *a, int value)
{
    if ((a->size + 1) > a->capacity) {

        // allocate new storage array
        int *new_array = (int*)malloc(sizeof(int) * (a->capacity*2));
        // TODO: check new_array for NULL

        // copy old elements over
        for (int i = 0; i < a->size; i++) {
            new_array[i] = a->array[i];
        }

        // deallocate old storage array
        free(a->array);

        // update state information
        a->array = new_array;
        a->capacity *= 2;
    }

    // add new element
    a->array[a->size++] = value;
}



  

Dynamic Arrays

● Big-O analysis

– Create empty array: 

– Access element:  

– Modify element:  

– Get length: 

– Append element:  ???



  

Dynamic Arrays

● Big-O analysis

– Create empty array: O(1)

– Access element:  O(1)

– Modify element:  O(1)

– Get length: O(1)

– Append element:  ???
● Let's measure cost in "copy operations"
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Dynamic Arrays

● Big-O analysis

– Create empty array: O(1)

– Access element:  O(1)

– Modify element:  O(1)

– Get length: O(1)

– Append element:
● If capacity > size:  O(1)
● If capacity == size:  O(n)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

cap 1 2 4 4 8 8 8 8 16 16 16 16 16 16 16 16 32

ops 1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1 17

n

ops



  

Dynamic Arrays

● Can we argue that the average cost of the append
operation is O(1), despite its occasional O(n) cost?

● Yes! Use amortized analysis

– Sometimes called the "accounting method"

● Basic idea: charge algorithm $$ to perform operations

– Overcharge for some (inexpensive) operations

– Use saved $$ to pay for expensive operations

– Show that the total $$ spent is O(n) for n operations

– Thus, each operation can be considered O(1)



  

Amortized Analysis

● Intuition: Cost of rare expensive operations
grows inversely proportionally to frequency
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Amortized Analysis

● Idea: Charge extra for O(1) insertions to “save
up” and “pay for” the O(n) insertions

Charge extra here



  

Amortized Analysis

● Idea: Charge extra for O(1) insertions to “save
up” and “pay for” the O(n) insertions

Charge extra here to pay for these



  

Amortized Analysis

● How much extra do we charge?

– Let's try charging 1 extra operation

– Total of 2 operations per append



  

Amortized Analysis

● How much extra do we charge?



  

Amortized Analysis

● How much extra do we charge?

Need 1; have 2; save one!



  

Amortized Analysis
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Need 2; have 2



  

Amortized Analysis

● How much extra do we charge?

Need 3; have 2+1=3



  

Amortized Analysis

● How much extra do we charge?

Need 1; have 2; save one!



  

Amortized Analysis

● How much extra do we charge?

Need 5; have 2+1=3 !!



  

Amortized Analysis

● How much extra do we charge?

Need 1, have 2; save one each!



  

Amortized Analysis

● How much extra do we charge?

Need 9, have 2+3=5 !!



  

Amortized Analysis

● How much extra do we charge?

Need 17, have 2+7=9 !!



  

Amortized Analysis

● How much extra do we charge?

– Let's try charging 2 extra operations

– Total of 3 operations per append



  

Amortized Analysis

● How much extra do we charge?

Need <=3; have 3



  

Amortized Analysis

● How much extra do we charge?

Need 1; have 3; save two!



  

Amortized Analysis

● How much extra do we charge?

Need 5; have 3+2=5



  

Amortized Analysis

● How much extra do we charge?

Need 1, have 3; save two each!



  

Amortized Analysis

● How much extra do we charge?

Need 9, have 3+6=9



  

Amortized Analysis

● How much extra do we charge?

Need 17, have 3+14=17



  

Amortized Analysis

● How much extra do we charge?

n

assume we're here

n



  

Amortized Analysis

● How much extra do we charge?

n

n

we'll add another n
elements before the
next "big" operation

n



  

Amortized Analysis

● How much extra do we charge?

n 2n

at that point we'll
need to move 2n
elements

nn

2n



  

Amortized Analysis

● How much extra do we charge?

n 2n

2n

n n

so we should charge 2 extra for
each of the n elements in between



  

Amortized Analysis

● How much extra do we charge?

– If we're doubling the size each time...
● We will need to make 2n copies at the next increase
● We will have n new appends during that period

– So we need to “save up” two extra operations per
cheap append to pay for the expensive appends

– Charge 3 total operations for each append



  

Amortized Analysis

● Total # of operations to add n items: 3n

– Which is O(n)

● Average operations per append = 3n/n = 3

● More generally: the total # of operations is O(n),
so the amortized cost per append is O(1)



  

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?



  

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?



  

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?



  

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?



  

Amortized Analysis

● Does the same argument apply to a constant
increase when the capacity is reached?

– No! The amount of operations “saved” is always
constant between increases, but the amount of work
done by the capacity increases grows linearly with
the size of the array.

– This actually leads to Ω(n2) total operations for n
appends, instead of O(n) total operations



  

Amortized Analysis

● Does the same argument apply to a tripling
increase when the capacity is reached?
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Amortized Analysis

● Does the same argument apply to a tripling
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Amortized Analysis

● Does the same argument apply to a tripling
increase when the capacity is reached?

– Yes! Charge three extra operations instead of two,
and then we will have saved roughly 3n operations
before the next capacity increase.

– Total operations for n appends: 4n ϵ O(n)
● The amortized cost for each append is still O(1)

– In fact, the argument works for any geometric
progression



  

Amortized Analysis

● Fundamental idea: Overcharge for cheap operations
to “save up” credit for expensive operations

– If the total cost for n operations can be shown to be O(n),
then the average cost for each individual operation is O(1)

● For PA2, you will use a dynamic array to implement
the Set ADT
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