CS 240

Fall 2014

Mike Lam, Professor

Hash Tables

Hash Tables

- Data structure for fast key/value lookups
- Used to implement the Map ADT
- Goal: O(1) access (insert/modify/delete)
- Observation: arrays provide O (1) access
- How to map from keys to array indices?
- How large does the array need to be?

Map ADT

Array

Hash Tables

- Simple case: keys are integers in $[0, N)$
- Create an array of length N
- Use keys directly as indices into the array
- This does not scale!
- N could be very large
- Keys might not be integers

$$
\begin{aligned}
& \text { ht = Array() } \\
& \text { ht[3] = "Z" } \\
& \text { ht[6] = "C" } \\
& \text { ht[7] = "Q" } \\
& \text { ht[1] = "D" }
\end{aligned}
$$

Items: (1,D), (3,Z), (6,C), (7,Q)

Hash Tables

- Main concept: hash function
- Maps keys \rightarrow table indices
- Table holds "buckets" of elements

Hash Functions

- Hash code (key \rightarrow 32/64-bit integer)
- Translation from key domain to hash code domain
- Key can be any immutable object
- Hash codes are usually native integers
- Compression function (hash code \rightarrow table index)
- Compression from hash code domain to index domain
- Result is used to access table storage

table

Hash Functions

- Major problem: Collisions
- Multiple keys mapping to the same index
- Two-fold approach:
- Minimize collisions by choosing a good hash code
- Handle collisions with chaining or probing

Hash Codes

- Most codes are based on interpreting raw bits as integers
- Issue: key size may be greater than native integer width
- Need to combine multiple integers
- Truncation
- Summation
- Exclusive-or (XOR)
- Polynomial combination
- Cyclic shifting
- Cryptographic hashes (e.g., MD5, SHA-1)

Bitwise Arithmetic

- Integer \rightarrow bit string representation: bin(i)
- Bit string representation \rightarrow integer: int (s, 2)
- Bitwise operations
- AND: x \& y
- OR: x | y
- NOT: ~x
- XOR: $x \wedge y$
- Left shift: $x \ll i$
- Right shift: x >> i

Implementation Note

- Dictionary keys in Python must be immutable
- A key's hash should not change while it is in a dictionary
- Thus, mutable objects are not good keys
- In fact, only immutable objects are hashable in Python
- This is a policy decision
- Thus, only immutable objects can be used as keys

Compression Functions

- Simplest: Modulus division
- $h(k) \% N$
- N is the number of buckets in the hash table
- N should be a prime number
- Better: Multiply-Add-and-Divide
- $((a \cdot h(k))+b) \% p) \% N$
- p is a prime number larger than N
- a and b are random integers from [0, $p-1$]
- $a>0$
- Essentially a pseudo-random number generator that uses hash codes as seeds

Collision Handling

- Separate chaining
- Each bucket is a linked list of elements
- Load factor: $\lambda=n / N$
- Expected size of each bucket
- If the hash function is good, map operations run in $O(\lambda)$
- This should be a small constant
- Preferably less than 1
- As long as λ is $O(1)$, map operations run in $O(1)$ expected time

Collision Handling

- Open addressing
- Only one (key, value) pair per "bucket"
- Problem: $h(k)$ not guaranteed to be open
- Probing scheme to find an open bucket
- Load factor: $\lambda=n / N$
- Percentage of buckets that are occupied
- Approaches
- Linear probing: $(h(k)+i) \% N$
- Quadratic probing: $\left(h(k)+i^{2}\right) \% N$
- Double hashing: $\left(h(k)+i \cdot h^{\prime}(k)\right) \% N$
- Pseudo-random probing: $(h(k)+p r a n d(i)) \% N$

Open Addressing

- Linear probing

- Quadratic probing

Collision Handling

- Coalesced hashing (hybrid chained/open)
- Maintain chains as pointers between buckets
- Avoids some of the overhead of probing
- Cuckoo hashing (multiple hash functions)
- Use multiple hash functions (primary and alternate)
- If new key's bucket is full, remove existing key and re-insert it using alternate hash
- Repeat until empty bucket is found or an infinite loop is detected

Load Factors

- Separate chaining
- Want to keep λ less than 1 (preferably < 0.9)
- Open addressing
- Want to keep λ less than $1 / 2$ or $2 / 3$
- Rehashing
- When constraints above are violated, resize the hash table and re-apply the compression function to re-insert all keys
- Cost can be amortized by doubling the table size
- Just as with dynamic arrays

Hashing Analysis

- The expected \# of keys in a bucket is ceil($n / N)$
- This is $O(1)$ if n is $O(N)$
- Assumes a good hash function
- Assumes enforcement of appropriate load factor
- Thus, expected costs for major map operations (insertion, modification, lookup, removal) are all O(1)
- Worse case: O(n)
- Full probabilistic analysis is beyond the scope of this class

Retrospective

- Next PA: implement the Set ADT with a hash table
- (just kidding!)
- Set/Map equivalence: a Set is a Map with no values
- Progression of Set/Map implementations:
- Array / Linked list
- Mostly O(n) operations
- Skip list / Balanced binary tree
- Mostly O(log n) operations
- Hash table
- Mostly O(1) operations

