

CS 240
Fall 2014

Mike Lam, Professor

Hash Tables

Hash Tables

● Data structure for fast key/value lookups

– Used to implement the Map ADT

– Goal: O(1) access (insert/modify/delete)

● Observation: arrays provide O(1) access

– How to map from keys to array indices?

– How large does the array need to be?

keys values indices values

Map ADT Array

Hash Tables

● Simple case: keys are integers in [0, N)

– Create an array of length N

– Use keys directly as indices into the array

● This does not scale!

– N could be very large

– Keys might not be integers

Items: (1,D), (3,Z), (6,C), (7,Q)

ht = Array()
ht[3] = "Z"
ht[6] = "C"
ht[7] = "Q"
ht[1] = "D"D Z C Q

0 1 2 3 4 5 6 7 8 9

Hash Tables

● Main concept: hash function

– Maps keys → table indices

– Table holds "buckets" of elements

keys values indices values

Map Array

keys indices

values

Hash Table

h(k)

values
values
values

Hash Functions

● Hash code (key → 32/64-bit integer)
– Translation from key domain to hash code domain

– Key can be any immutable object

– Hash codes are usually native integers

● Compression function (hash code → table index)
– Compression from hash code domain to index domain

– Result is used to access table storage

keys
hash
codes i

table

h(k)

Hash Functions

● Major problem: Collisions

– Multiple keys mapping to the same index

– Two-fold approach:
● Minimize collisions by choosing a good hash code
● Handle collisions with chaining or probing

Hash Codes

● Most codes are based on interpreting raw bits as
integers
– Issue: key size may be greater than native integer width

● Need to combine multiple integers

– Truncation

– Summation

– Exclusive-or (XOR)

– Polynomial combination

– Cyclic shifting

– Cryptographic hashes (e.g., MD5, SHA-1)

bad for variable-length objects

Bitwise Arithmetic

● Integer → bit string representation: bin(i)

● Bit string representation → integer: int(s, 2)

● Bitwise operations

– AND: x & y

– OR: x | y

– NOT: ~x

– XOR: x ^ y

– Left shift: x << i

– Right shift: x >> i

Implementation Note

● Dictionary keys in Python must be immutable

– A key's hash should not change while it is in a dictionary

– Thus, mutable objects are not good keys

– In fact, only immutable objects are hashable in Python
● This is a policy decision

– Thus, only immutable objects can be used as keys

Compression Functions

● Simplest: Modulus division
– h(k) % N

– N is the number of buckets in the hash table

– N should be a prime number

● Better: Multiply-Add-and-Divide
– ((a·h(k)) + b) % p) % N

– p is a prime number larger than N

– a and b are random integers from [0, p-1]
● a > 0

– Essentially a pseudo-random number generator that uses
hash codes as seeds

Collision Handling

● Separate chaining

– Each bucket is a linked list of elements

– Load factor: λ = n/N
● Expected size of each bucket
● If the hash function is good, map operations run in O(λ)
● This should be a small constant

– Preferably less than 1
● As long as λ is O(1), map operations run in O(1) expected time

Collision Handling

● Open addressing
– Only one (key, value) pair per "bucket"

– Problem: h(k) not guaranteed to be open

– Probing scheme to find an open bucket

– Load factor: λ = n/N
● Percentage of buckets that are occupied

● Approaches
– Linear probing: (h(k) + i) % N

– Quadratic probing: (h(k) + i2) % N

– Double hashing: (h(k) + i·h'(k)) % N

– Pseudo-random probing: (h(k) + prand(i)) % N

Open Addressing

● Linear probing

● Quadratic probing

Z A E F X G H K M

Z A E F X G H K M

Collision Handling

● Coalesced hashing (hybrid chained/open)

– Maintain chains as pointers between buckets

– Avoids some of the overhead of probing

● Cuckoo hashing (multiple hash functions)

– Use multiple hash functions (primary and alternate)

– If new key's bucket is full, remove existing key and re-insert
it using alternate hash

– Repeat until empty bucket is found or an infinite loop is
detected

Load Factors

● Separate chaining

– Want to keep λ less than 1 (preferably < 0.9)

● Open addressing

– Want to keep λ less than 1/2 or 2/3

● Rehashing

– When constraints above are violated, resize the hash table
and re-apply the compression function to re-insert all keys

– Cost can be amortized by doubling the table size
● Just as with dynamic arrays

Hashing Analysis

● The expected # of keys in a bucket is ceil(n/N)

– This is O(1) if n is O(N)

– Assumes a good hash function

– Assumes enforcement of appropriate load factor

● Thus, expected costs for major map operations
(insertion, modification, lookup, removal) are all O(1)

– Worse case: O(n)

● Full probabilistic analysis is beyond the scope of this
class

Retrospective

● Next PA: implement the Set ADT with a hash table

– (just kidding!)

● Set/Map equivalence: a Set is a Map with no values

● Progression of Set/Map implementations:

– Array / Linked list
● Mostly O(n) operations

– Skip list / Balanced binary tree
● Mostly O(log n) operations

– Hash table
● Mostly O(1) operations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

