

CS 240
Fall 2014

Mike Lam, Professor

Balanced (AVL) Trees

I find your
lack of balance

disturbing.

Review

● Binary Search Trees (BSTs)

– Ordered binary tree

– Insertions, lookups, and removals

– Operations are O(h) where h is the height of the tree

– For mostly-random insertions and deletions, h ≈ log n

– For other situations, we need to use a more "balanced"
binary tree implementation

● For heaps, we enforced balance by enforcing completeness
● For BSTs, this would be much more expensive
● Tradeoff between balance and speed of operations

Issues

● How much should we rebalance?

– How often? How many nodes? How strict?

– How do we measure balance?

● We could rebalance the entire tree after every insertion

– This would lead to O(n log n) insertion times

– Essentially re-build the tree every time

● Goal: faster insertions and "good enough" balance

– AVL trees (easiest to understand)

– Red-Black trees

– Many others...

AVL Trees

● Adelson-Velsky and Landis (AVL) Tree

– Named after inventors G. M. Adelson-Velsky and E. M.
Landis (1962)

– Height-balance property: heights of children differ by at
most one

– Insert/remove operations enforce this property using tree
rotations

Image from: http://www.geeksforgeeks.org/how-to-determine-if-a-binary-tree-is-balanced/

Tree Height

● Caution: Textbook changes their definition of height!

– Former: # of edges from node to furthest leaf

– Latter: # of nodes from (and including) node to furthest leaf

– We can continue using the old definition by defining the
height of an empty tree to be -1

Binary Search Tree

44

17

8 32

28

29

88

65 97

9354 82

76

80

Binary Search Tree

44

17

8 32

28

29

88

65 97

9354 82

76

80

h=0

h=0

h=0

h=0

h=0

Binary Search Tree

44

17

8 32

28

29

88

65 97

9354 82

76

80

h=0

h=0

h=0

h=0

h=0h=1

h=1

h=1

Binary Search Tree

44

17

8 32

28

29

88

65 97

9354 82

76

80

h=0

h=0

h=0

h=0

h=0h=1

h=1

h=1

h=-1

h=-1

Binary Search Tree

44

17

8 32

28

29

88

65 97

9354 82

76

80

h=0

h=0

h=0

h=0

h=0h=1

h=1

h=1

Imbalances

● How do we fix imbalances?

– Need to re-arrange tree

● Solution: Rotations!

● Example:

Imbalances

● How do we fix imbalances?

– Need to re-arrange tree

● Solution: Rotations!

● Example:

Rotations

● Rotations
– Single rotation (below)

– Single/double rotations (right)
● Four cases of trinode restructuring

x

x y

y

x.right = y.left
y.left = x

y.left = x.right
x.right = y

"right rotation"

"left rotation"

AVL Trees

● Insertion

– Insert into BST as usual

– Check ancestors of new node for imbalances

– Fix imbalances via trinode restructuring

● Removal

– Remove from BST as usual

– Check ancestors of removed node for imbalances

– Fix imbalances via trinode restructuring

AVL Tree

44

17

32

78

50 88

48 62

Insert 54

h=0 h=0

h=0 h=0h=1

h=1 h=2

h=3

AVL Tree

44

17

32

78

50 88

48 62

Update heights of
ancestors and check
for imbalances

h=0 h=0

h=0 h=0h=1

h=1 h=2

h=3

54 h=0

AVL Tree

44

17

32

78

50 88

48 62

Update heights of
ancestors and check
for imbalances

h=0 h=1

h=0 h=0h=1

h=1 h=2

h=3

54 h=0

AVL Tree

44

17

32

78

50 88

48 62

Update heights of
ancestors and check
for imbalances

h=0 h=1

h=0 h=0h=2

h=1 h=2

h=3

54 h=0

AVL Tree

44

17

32

78

50 88

48 62

Imbalance
detected

h=0 h=1

h=0 h=0h=2

h=1 h=2

h=3

54 h=0

AVL Tree

44

17

32

78

50 88

48 62

Nodes involved

h=0 h=1

h=0 h=0h=2

h=1 h=2

h=3

54 h=0

AVL Tree

44

17

32

78

50 88

48 62

Rebalance

h=0 h=1

h=0 h=0h=2

h=1 h=2

h=3

54 h=0

AVL Tree

44

17

32

78

62 88

50

54Rebalance

h=1

h=0

h=0 h=0h=2

h=1 h=2

h=3

48h=0

AVL Tree

44

17

32

62

50 78

48 54

Balanced subtree;
continue up tree to root

h=0 h=0

h=0 h=1h=1

h=1 h=2

h=3

88 h=0

AVL Tree

44

17

32

62

50 78

48 54

Done!

h=0 h=0

h=0 h=1h=1

h=1 h=2

h=3

88 h=0

Exercises

● 3, 9, 12, 5, 4, 1

● 10, 5, 7, 15, 9, 25

To check your answers:
http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

AVL Tree Analysis

● In general: n(h) = 1 + n(h-1) + n(h-2)

– AVL tree with minimal number of nodes has one node and
two subtrees: one with height h-1 and one with height h-2

● This is a Fibonacci progression

– Exponential w.r.t. height: n(h) is Ω(2h)

– Thus, h is O(log n)

● See Section 11.3 for formal justification

– Stricter bound: h < 2 log n + 2

Alternative: Red-Black Trees

● Coloring scheme
– Root is colored black

– All children of a red node must be colored black (no "double reds")

– All nodes with zero or one children have the same number of black-colored ancestors

● Path from root to furthest leaf is no more than twice as long as the path from
root to nearest leaf

● Less-strictly balanced
● Faster insertion/removal but slower lookups

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

