CS 240 Fall 2014

Mike Lam, Professor

Balanced (AVL) Trees

Review

- Binary Search Trees (BSTs)
- Ordered binary tree
- Insertions, lookups, and removals
- Operations are $O(h)$ where h is the height of the tree
- For mostly-random insertions and deletions, $h \approx \log n$
- For other situations, we need to use a more "balanced" binary tree implementation
- For heaps, we enforced balance by enforcing completeness
- For BSTs, this would be much more expensive
- Tradeoff between balance and speed of operations

Issues

- How much should we rebalance?
- How often? How many nodes? How strict?
- How do we measure balance?
- We could rebalance the entire tree after every insertion
- This would lead to $O(n \log n)$ insertion times
- Essentially re-build the tree every time
- Goal: faster insertions and "good enough" balance
- AVL trees (easiest to understand)
- Red-Black trees
- Many others...

AVL Trees

- Adelson-Velsky and Landis (AVL) Tree
- Named after inventors G. M. Adelson-Velsky and E. M. Landis (1962)
- Height-balance property: heights of children differ by at most one
- Insert/remove operations enforce this property using tree rotations

A height-balanced Tree

Not a height-balanced tree

Tree Height

- Caution: Textbook changes their definition of height!
- Former: \# of edges from node to furthest leaf
- Latter: \# of nodes from (and including) node to furthest leaf
- We can continue using the old definition by defining the height of an empty tree to be -1

Binary Search Tree

Imbalances

- How do we fix imbalances?
- Need to re-arrange tree
- Solution: Rotations!
- Example:

Imbalances

- How do we fix imbalances?
- Need to re-arrange tree
- Solution: Rotations!
- Example:

Rotations

- Rotations
- Single rotation (below)
- Single/double rotations (right)
- Four cases of trinode restructuring

AVL Trees

- Insertion
- Insert into BST as usual
- Check ancestors of new node for imbalances
- Fix imbalances via trinode restructuring
- Removal
- Remove from BST as usual
- Check ancestors of removed node for imbalances
- Fix imbalances via trinode restructuring

AVL Tree

Insert 54

AVL Tree

Update heights of ancestors and check

$$
54 \mathrm{~h}=0
$$ for imbalances

AVL Tree

Update heights of ancestors and check

$$
54 \mathrm{~h}=0
$$ for imbalances

AVL Tree

Update heights of ancestors and check

$$
54 \mathrm{~h}=0
$$ for imbalances

AVL Tree

Imbalance
detected

AVL Tree

Nodes involved

AVL Tree

AVL Tree

AVL Tree

Balanced subtree; continue up tree to root

AVL Tree

Done!

Exercises

- 3, 9, 12, 5, 4, 1
- 10, 5, 7, 15, 9, 25

To check your answers:
http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

AVL Tree Analysis

- In general: $n(h)=1+n(h-1)+n(h-2)$
- AVL tree with minimal number of nodes has one node and two subtrees: one with height $h-1$ and one with height $h-2$
- This is a Fibonacci progression
- Exponential w.r.t. height: $n(h)$ is $\Omega\left(2^{h}\right)$
- Thus, h is $O(\log n)$
- See Section 11.3 for formal justification
- Stricter bound: $h<2 \log n+2$

Alternative: Red-Black Trees

- Coloring scheme
- Root is colored black
- All children of a red node must be colored black (no "double reds")
- All nodes with zero or one children have the same number of black-colored ancestors
- Path from root to furthest leaf is no more than twice as long as the path from root to nearest leaf
- Less-strictly balanced
- Faster insertion/removal but slower lookups

