
  

CS 240
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Mike Lam, Professor

Balanced (AVL) Trees

I find your
lack of balance

disturbing.



  

Review

● Binary Search Trees (BSTs)

– Ordered binary tree

– Insertions, lookups, and removals

– Operations are O(h) where h is the height of the tree

– For mostly-random insertions and deletions, h ≈ log n

– For other situations, we need to use a more "balanced"
binary tree implementation

● For heaps, we enforced balance by enforcing completeness
● For BSTs, this would be much more expensive
● Tradeoff between balance and speed of operations



  

Issues

● How much should we rebalance?

– How often? How many nodes? How strict?

– How do we measure balance?

● We could rebalance the entire tree after every insertion

– This would lead to O(n log n) insertion times

– Essentially re-build the tree every time

● Goal: faster insertions and "good enough" balance

– AVL trees (easiest to understand)

– Red-Black trees

– Many others...



  

AVL Trees

● Adelson-Velsky and Landis (AVL) Tree

– Named after inventors G. M. Adelson-Velsky and E. M.
Landis (1962)

– Height-balance property: heights of children differ by at
most one

– Insert/remove operations enforce this property using tree
rotations 

Image from: http://www.geeksforgeeks.org/how-to-determine-if-a-binary-tree-is-balanced/



  

Tree Height

● Caution: Textbook changes their definition of height!

– Former: # of edges from node to furthest leaf

– Latter: # of nodes from (and including) node to furthest leaf

– We can continue using the old definition by defining the
height of an empty tree to be -1
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Imbalances

● How do we fix imbalances?

– Need to re-arrange tree

● Solution: Rotations!

● Example:



  

Imbalances

● How do we fix imbalances?

– Need to re-arrange tree
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Rotations

● Rotations
– Single rotation (below)

– Single/double rotations (right)
● Four cases of trinode restructuring

x

x y

y

x.right = y.left
y.left = x

y.left = x.right
x.right = y

"right rotation"

"left rotation"



  

AVL Trees

● Insertion

– Insert into BST as usual

– Check ancestors of new node for imbalances

– Fix imbalances via trinode restructuring

● Removal

– Remove from BST as usual

– Check ancestors of removed node for imbalances

– Fix imbalances via trinode restructuring
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Exercises

● 3, 9, 12, 5, 4, 1

● 10, 5, 7, 15, 9, 25

To check your answers:
http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html


  

AVL Tree Analysis

● In general: n(h) = 1 + n(h-1) + n(h-2)

– AVL tree with minimal number of nodes has one node and
two subtrees: one with height h-1 and one with height h-2

● This is a Fibonacci progression

– Exponential w.r.t. height: n(h) is Ω(2h)

– Thus, h is O(log n)

● See Section 11.3 for formal justification

– Stricter bound:  h  <  2 log n + 2



  

Alternative: Red-Black Trees

● Coloring scheme
– Root is colored black

– All children of a red node must be colored black (no "double reds")

– All nodes with zero or one children have the same number of black-colored ancestors

● Path from root to furthest leaf is no more than twice as long as the path from
root to nearest leaf

● Less-strictly balanced
● Faster insertion/removal but slower lookups
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