

CS 240
Fall 2014

Mike Lam, Professor

Maps and Binary Search Trees

ADTs

● List

● Set

● Stack

● Queue

– Deque

– Priority Queue

● Tree

– Binary Tree

New ADT: Map

● Map: key → value

● Unique keys, non-unique values

● Other names:

– Dictionary (Python)

– Associative array

● Many applications

– Database: student ID# → student info

– DNS: domain name → IP address

– OS: process ID → process

– Namespace: variable → value

Map ADT

● M[k] retrieve value for key

● M[k] = v modify value for key

● del M[k] remove key from map

● len(M) return # of keys

● iter(M) generate sequence of keys

● k in M return True if key has a mapping

● M.clear() remove all mappings

● M.keys() return a set of all keys

● M.values() return a set of all values

● M1 == M2 return True if the maps have identical associations

Recall PA1

● Search engine DB: maps words → websites

● index() method

– Crawl multiple websites for keywords

– Add word → URL mapping for each keyword-site pair

– This can be relatively slow

● search() method

– Perform DB lookup

– Returns websites associated with the given word

– This needs to be FAST!

Map Implementations

● Store (key, value) tuples

● Variety of internal structures possible

● Important operations:

– Insert

– Lookup

– Modify

Map Implementations

● Unsorted list

– Insert: O(1) Lookup: O(n) Modify: O(n)

● Sorted list

– Insert: O(n) Lookup: O(log n) Modify: O(log n)

● Skip list
– Insert: O(log n) Lookup: O(log n) Modify: O(log n)

Hashing

● Sneak peak: "hashing" is a particular kind of mapping:
keys → buckets

– Can be used to implement maps
● Keep a bunch of buckets for data
● Store and lookup items by their key using the hash mapping

– If implemented properly, this can be VERY fast!

– In fact, most operations are O(1) average time

– This is what Python dictionaries use

● We will cover hashing in the last couple of weeks

– But since we're already talking about trees...

Sorted Map ADT

● Nearly identical to regular Map ADT

– Keys are sorted (not necessarily values!)

● Addition of ordering methods
– M.find_min() and M.find_max()

– M.find_lt(k), M.find_le(k),
M.find_gt(k), M.find_ge(k)

– M.find_range(start, stop)

– iter(M)

– reversed(M)

Sorted Map Implementation

● Hashing does not work very well for sorted maps
● No inherent correlation between bucket ordering and key

ordering
● In fact, the best hashing mechanisms distribute the keys

in a uniformly random fashion across all buckets
● We will need another solution

Sorted Map Implementation

● Intuition: use binary trees to bound the number of keys
we have to examine during lookups

● Two goals:

– We want to bound the tree to roughly O(log n) levels
● This implies restrictions on the structure of the tree
● Heaps accomplish this by restricting the tree to be complete

– We also want a stronger ordering than the heap-order
property

● This implies restrictions on the content of the tree
● It also makes it far more difficult to maintain completeness

Binary Search Tree

● Binary Search Tree (BST)

– Each tree node stores a key-value pair (k,v) and two child
node references

– All keys in the left subtree are less than k

– All keys in the right subtree are greater than k

– Often we will ignore the values
● They are irrelevant to BST implementation details

Binary Search Tree

44

17

8 32

28

29

88

65 97

9354 82

76

80

Binary Search Tree

● Iterate over all keys

– Inorder recursive tree traversal

1.Recurse on left subtree

2.Visit current key

3.Recurse on right subtree

● Finding min/max key

– Follow left/right child references exclusively

● Finding predecessor/successor keys

– Requires more complex traversal

– Could be a descendant or an ancestor

Binary Search Tree

● Searching for a particular key

– def search(k)
● if k == self.key:

– return self

● elif k < self.key and self.left is not None:
– return left.search(k)

● elif k > self.key and self.right is not None:
– return right.search(k)

● else:
– return None # not found

Binary Search Tree

● Insertion of new key

– def insert(k, v):
● if k == self.key:

– self.value = v

● elif k < self.key:
– if self.left is None:

● self.left = _Node(key, value)
– else:

● self.left.insert(k, v)
● else: # if k > self.key:

– if self.right is None:
● self.right = _Node(key, value)

– else:
● self.right.insert(k, v)

Binary Search Tree

● Deletion of a key

– Find the correct node (p)

– If p has no children:
● Remove p

– If p has one child (c):
● Replace p with c

– If p has two children:
● Find the predecessor (r) of p

– Since p has two children, the predecessor will be in the left subtree
– Predecessor's key is greater than any key in the left subtree and less than

any key in the right subtree
– Thus, r will NOT have a right child

● Replace p's key with r's key
● Remove r and replace with its left child (if it had one)

Binary Search Tree

44

17

8 32

28

29

88

65 97

9354 82

76

80

Binary Search Tree

● What is the minimum key?
● What is the maximum key?
● What is the predecessor of 88?
● What is the predecessor of 82?
● What is the predecessor of 76?
● What is the predecessor of 29?
● What is the predecessor of 44?
● What is the successor of 17?
● What is the successor of 29?

Binary Search Tree

● Where should new key 5 go?
● Where should new key 68 go?
● Where should new key 100 go?
● What will the tree look like after removing 29?
● What will the tree look like after removing 28?
● What will the tree look like after removing 82?
● What will the tree look like after removing 88?
● What will the tree look like after removing 65?
● What will the tree look like after removing 44?

BST Analysis

● Most worst-case running times are O(h)
– Where h is the height of the binary tree

– This makes restraining the tree's height very important to being
efficient

– For mostly-random insertions and deletions, h ≈ log n

– For other situations, we need to use a more "balanced" binary
tree implementation

● Running time of find_range is O(s+h)

– Where s is the number of items returned

● Running time of iterators is O(n)
– Has to visit every key

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

