CS 240 Fall 2014

Mike Lam, Professor

Maps and Binary Search Trees

ADTs

- List
- Set
- Stack
- Queue
 - Deque
 - Priority Queue
- Tree
 - Binary Tree

New ADT: Map

- Map: key → value
- Unique keys, non-unique values
- Other names:
 - Dictionary (Python)
 - Associative array
- Many applications
 - Database: student ID# \rightarrow student info
 - DNS: domain name \rightarrow IP address
 - OS: process ID \rightarrow process
 - Namespace: variable \rightarrow value

Map ADT

- M[k] retrieve value for key
- M[k] = v modify value for key
- del M[k] remove key from map
- len(M) return # of keys
- iter(M) generate sequence of keys
- k in M return True if key has a mapping
- M.clear() remove all mappings
- M.keys() return a set of all keys
- M.values() return a set of all values
- M1 == M2 return True if the maps have identical associations

Recall PA1

- Search engine DB: maps words \rightarrow websites
- index() method
 - Crawl multiple websites for keywords
 - Add word \rightarrow URL mapping for each keyword-site pair
 - This can be relatively slow
- search() method
 - Perform DB lookup
 - Returns websites associated with the given word
 - This needs to be FAST!

Map Implementations

- Store (key, value) tuples
- Variety of internal structures possible
- Important operations:
 - Insert
 - Lookup
 - Modify

Map Implementations

- Unsorted list
 - Insert: O(1)
 Lookup: O(n)
 Modify: O(n)
- Sorted list
 - Insert: O(n) Lookup: O(log n) Modify: O(log n)
- Skip list
 - Insert: O(log n) Lookup: O(log n) Modify: O(log n)

Hashing

- Sneak peak: "hashing" is a particular kind of mapping: keys → buckets
 - Can be used to implement maps
 - Keep a bunch of buckets for data
 - Store and lookup items by their key using the hash mapping
 - If implemented properly, this can be VERY fast!
 - In fact, most operations are O(1) average time
 - This is what Python dictionaries use
- We will cover hashing in the last couple of weeks
 - But since we're already talking about trees...

Sorted Map ADT

- Nearly identical to regular Map ADT
 - Keys are sorted (not necessarily values!)
- Addition of ordering methods
 - M.find_min() and M.find_max()
 - M.find_lt(k), M.find_le(k), M.find_gt(k), M.find_ge(k)
 - M.find_range(start, stop)
 - iter(M)
 - reversed(M)

Sorted Map Implementation

- Hashing does not work very well for sorted maps
- No inherent correlation between bucket ordering and key ordering
- In fact, the best hashing mechanisms distribute the keys in a uniformly random fashion across all buckets
- We will need another solution

Sorted Map Implementation

- Intuition: use binary trees to bound the number of keys we have to examine during lookups
- Two goals:
 - We want to bound the tree to roughly O(log n) levels
 - This implies restrictions on the structure of the tree
 - Heaps accomplish this by restricting the tree to be complete
 - We also want a stronger ordering than the heap-order property
 - This implies restrictions on the content of the tree
 - It also makes it far more difficult to maintain completeness

- Binary Search Tree (BST)
 - Each tree node stores a key-value pair (k,v) and two child node references
 - All keys in the left subtree are less than k
 - All keys in the right subtree are greater than k
 - Often we will ignore the values
 - They are irrelevant to BST implementation details

- Iterate over all keys
 - Inorder recursive tree traversal
 - 1. Recurse on left subtree
 - 2. Visit current key
 - 3. Recurse on right subtree
- Finding min/max key
 - Follow left/right child references exclusively
- Finding predecessor/successor keys
 - Requires more complex traversal
 - Could be a descendant or an ancestor

- Searching for a particular key
 - def search(k)
 - if k == self.key:
 - return self
 - elif k < self.key and self.left is not None: - return left.search(k)
 - elif k > self.key and self.right is not None: - return right.search(k)
 - else:
 - return None # not found

- Insertion of new key
 - def insert(k, v):
 - if k == self.key:
 - self.value = v
 - elif k < self.key:
 - if self.left is None:
 - self.left = _Node(key, value)
 - else:
 - self.left.insert(k, v)
 - else: # if k > self.key:
 - if self.right is None:
 - self.right = _Node(key, value)
 - else:
 - self.right.insert(k, v)

- Deletion of a key
 - Find the correct node (p)
 - If p has no children:
 - Remove p
 - If p has one child (c):
 - Replace p with c
 - If p has two children:
 - Find the predecessor (r) of p
 - Since p has two children, the predecessor will be in the left subtree
 - Predecessor's key is greater than any key in the left subtree and less than any key in the right subtree
 - Thus, r will NOT have a right child
 - Replace p's key with r's key
 - Remove r and replace with its left child (if it had one)

- What is the minimum key?
- What is the maximum key?
- What is the predecessor of 88?
- What is the predecessor of 82?
- What is the predecessor of 76?
- What is the predecessor of 29?
- What is the predecessor of 44?
- What is the successor of 17?
- What is the successor of 29?

- Where should new key 5 go?
- Where should new key 68 go?
- Where should new key 100 go?
- What will the tree look like after removing 29?
- What will the tree look like after removing 28?
- What will the tree look like after removing 82?
- What will the tree look like after removing 88?
- What will the tree look like after removing 65?
- What will the tree look like after removing 44?

BST Analysis

- Most worst-case running times are O(h)
 - Where *h* is the height of the binary tree
 - This makes restraining the tree's height very important to being efficient
 - For mostly-random insertions and deletions, $h \approx \log n$
 - For other situations, we need to use a more "balanced" binary tree implementation
- Running time of find_range is O(s+h)
 - Where s is the number of items returned
- Running time of iterators is *O*(*n*)
 - Has to visit every key