CS 240
Fall 2014

Mike Lam, Professor

Maps and Binary Search Trees

e |ist
e Set
e Stack

e Queue

- Deque

— Priority Queue
* Tree

— Binary Tree

I New ADT. Map

e Map: key - value
e Unigue keys, non-unique values

e Other names:
— Dictionary (Python)
— Associative array
 Many applications
— Database: student ID# - student info
— DNS: domain name - IP address

— OS: process ID - process
- Namespace: variable - value

I Map ADT

e M[K] retrieve value for key

e M[k] = Vv modify value for key

« del M[k] remove key from map

e len(M) return # of keys

e 1ter (M) generate sequence of keys

e k 1IN M return True if key has a mapping

e M.clear () remove all mappings
e M.keys() return a set of all keys
e M.values() returna set of all values

e M1 == M2 return True if the maps have identical associations

I Recall PA1

e Search engine DB: maps words — websites
« index() method

— Crawl multiple websites for keywords
- Add word —» URL mapping for each keyword-site pair
— This can be relatively slow

« search() method
— Perform DB lookup

— Returns websites associated with the given word
— This needs to be FAST!

I Map Implementations

o Store (key, value) tuples
e Variety of internal structures possible
e Important operations:

- Insert
— Lookup
— Modify

e Unsorted list

— Insert: O(1) Lookup: O(n) Modify: O(n)
e Sorted list

— Insert: O(n) Lookup: O(log n) Modify: O(log n)
o Skip list

- Insert: O(log n) Lookup: O(log n) Modify: O(log n)

I Hashing

 Sneak peak: "hashing" is a particular kind of mapping:
keys — buckets

— Can be used to implement maps

» Keep a bunch of buckets for data
e Store and lookup items by their key using the hash mapping

— If implemented properly, this can be VERY fast!
— In fact, most operations are O(1) average time
— This is what Python dictionaries use
* \We will cover hashing in the last couple of weeks

— But since we're already talking about trees...

I Sorted Map ADT

* Nearly identical to regular Map ADT

- Keys are sorted (not necessarily values!)
* Addition of ordering methods

M.find_min() and M.find_max()

M.find_1lt(k), M.find_le(k),
M.find_gt(k), M.find_ge(k)

M.find_range(start, stop)
iter(M)
reversed(M)

I Sorted Map Implementation

Hashing does not work very well for sorted maps

 No inherent correlation between bucket ordering and key
ordering

In fact, the best hashing mechanisms distribute the keys
In a uniformly random fashion across all buckets

We will need another solution

I Sorted Map Implementation

 Intuition: use binary trees to bound the number of keys
we have to examine during lookups

 Two goals:

- We want to bound the tree to roughly O(log n) levels

e This implies restrictions on the structure of the tree
 Heaps accomplish this by restricting the tree to be complete
— We also want a stronger ordering than the heap-order
property
e This implies restrictions on the content of the tree
e |t also makes it far more difficult to maintain completeness

I Binary Search Tree

e Binary Search Tree (BST)

— Each tree node stores a key-value pair (k,v) and two child
node references

— All keys in the left subtree are less than k
— All keys in the right subtree are greater than k

— Often we will ignore the values
 They are irrelevant to BST implementation details

I Binary Search Tree

* |terate over all keys

— |norder recursive tree traversal

1. Recurse on left subtree
2.Visit current key
3. Recurse on right subtree

e Finding min/max key
— Follow left/right child references exclusively
e Finding predecessor/successor keys

— Requires more complex traversal
— Could be a descendant or an ancestor

I Binary Search Tree

e Searching for a particular key

- def search(k)
e 1f k == self.key:

- return self

e elif k < self.key and self.left is not None:
- return left.search(k)

e elif k > self.key and self.right is not None:
- return right.search(k)

e else:
- return None # not found

I Binary Search Tree

e |Insertion of new key
- def 1insert(k, v):
e 1T k == self.key:
- self.value = v

e elif k < self.key:

—- 1f self.left is None:
« self.left = _Node(key, value)

- else:
« self.left.insert(k, v)

e else: # 1if k > self.key:

- 1f self.right is None:
« self.right = _Node(key, value)

- else:
e self.right.insert(k, v)

I Binary Search Tree

e Deletion of a key

- Find the correct node (p)
— If p has no children:

e Remove p

— If p has one child (c):
* Replace p with ¢

— If p has two children:

e Find the predecessor (r) of p

— Since p has two children, the predecessor will be in the left subtree

— Predecessor's key is greater than any key in the left subtree and less than
any key in the right subtree

— Thus, r will NOT have a right child
* Replace p's key with r's key
 Remove r and replace with its left child (if it had one)

I Binary Search Tree

T

nat Is t
nat Is t
nat Is t
nat Is t
nat is t
nat is t
nat is t
nat Is t

nat Is t

ne minimum key?

ne maximum key?

ne
ne
ne
ne
ne

prec
prec
prec
prec

prec

ecessor of 88?
ecessor of 827
ecessor of 767
ecessor of 29?
ecessor of 447

ne successor of 177

ne successor of 29?

I Binary Search Tree

T

nere s
nere s
nere s
nat wi
nat wi
nat wi
nat wi
nat wi

nat wi

nould new key 5 go?

nould new key 68 go?

nould new key 100 go?

the tree look like after removing 29?
the tree look like after removing 28?
the tree look like after removing 827?
the tree look like after removing 88?
the tree look like after removing 657
the tree look like after removing 447

I BST Analysis

 Most worst-case running times are O(h)

— Where h is the height of the binary tree

— This makes restraining the tree's height very important to being
efficient

- For mostly-random insertions and deletions, h =log n

— For other situations, we need to use a more "balanced" binary
tree implementation

 Running time of find_range is O(s+h)
— Where s is the number of items returned
* Running time of iterators is O(n)

— Has to visit every key

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

