CS 240 Fall 2014

Mike Lam, Professor

Priority Queues

- FIFO abstract data structure w/ priorities
 - Always remove item with highest priority
- Store key (priority) with value
 - Store (key, value) tuples as items
 - Goal: retrieve/remove the lowest key value
- Priority Queue ADT operations:
 - P.add(k,v)
 - P.remove_min()
 - P.min()
 - P.is_empty()
 - len(P)

Priority Queues

- Sorting using PQs
 - Add all the items to the PQ
 - Remove all the items
 - In sorted order
- Unsorted list implementation
 - Similar to selection sort; phase 1 is O(n) and phase 2 is $O(n^2)$
- Sorted list implementation
 - Similar to insertion sort; phase 1 is $O(n^2)$ and phase 2 is O(n)
- Heap implementation
 - New sorting algorithm: "heap sort"
 - Not divide-and-conquer, but still O(n log n)

Heaps for Sorting

- Linked-based heap implementation
 - Requires O(n) extra memory
 - Can use min or max heaps
 - Add operations: O(n log n)
 - Remove operations: O(n log n)
- In-place array heap implementation
 - No extra memory required
 - Need to use max heaps
 - Add operations: *O(n log n)* or *O(n)*
 - Remove operations: O(n log n)

Heap Implementation

- Because heaps are *complete* trees, there is a very convenient array-based representation
- Breadth-first traversal (level numbering)
 - Assign each node in the tree an index
 - The root is index 0
 - The left subchild of node k is index 2k+1
 - The right subchild of node k is index 2k+2
 - The parent of node k is at index floor((k-1) / 2)

- Basic idea: build heap in-place then repeatedly remove max item
- Phase 1 ("heapification")
 - Start with single-item max heap w/ first item in list
 - Add each subsequent item to the heap
 - Up-heap or down-heap bubbling
- Phase 2 (sorting)
 - Repeatedly remove the maximum item and storing it at the end of the list in a down-ward growing sorted region
 - Down-heap bubbling to restore heap-order property

```
def up heap(items, i):
    """ Perform up-heap bubbling, starting at index i."""
   if i > 0:
       p = (i-1)//2
       if items[i] > items[p]:
            items[i], items[p] = items[p], items[i]
           _up_heap(items, p) # tail recursion
def _down_heap(items, i, n):
    """ Perform down-heap bubbling on an n-element heap, starting at index i."""
   lc = 2*i+1
   rc = 2*i+2
   max_idx = i
    if lc < n and items[lc] > items[max_idx]: # check left child
       max idx = lc
    if rc < n and items[rc] > items[max_idx]: # check right child
       max idx = rc
    if max idx != i:
                                               # swap
        items[i], items[max_idx] = items[max_idx], items[i]
        if max idx < n:</pre>
           _down_heap(items, max_idx, n) # tail recursion
```


• List: [17, 25, 100, 2, 3, 36, 1, 7, 19]

Example

- List: [17, 25, 100, 2, 3, 36, 1, 7, 19]
- Heap: [100, 19, 36, 17, 3, 25, 1, 2, 7]

Example

- List: [17, 25, 100, 2, 3, 36, 1, 7, 19]
- Heap: [100, 19, 36, 17, 3, 25, 1, 2, 7]
- Final: [1, 2, 3, 7, 17, 19, 25, 36, 100]

Heap Sort Analysis

- Phase 1 (heap grows):
 - If each add() operation requires O(log n) time, this phase will require O(n log n) time
 - If we can argue that each add() operation requires only O(1) time on average, this phase will require O(n) time
- Phase 2 (heap shrinks):
 - Each remove_max() operation requires O(log n) time, so this phase will require O(n log n) time

Heapification

- One option: up-heap bubbling
 - Bubble up each newly added item to preserve heap-order property
 - Worst-case running time: *O(n log n)*
- Another option: down-heap bubbling
 - Possible when we have all elements in advance
 - Bottom-up heap construction
 - Bubble down from each non-leaf node
 - More nodes belong near the bottom of the tree, so this is better in the long run (formal argument in 9.3.6)
 - Worst-case running time: *O*(*n*)

Heapification

Benefit of bottom-up construction

The number in the circle indicates the maximum times of swapping required when adding the node to the heap.

Image taken from: https://en.wikipedia.org/wiki/Heapsort

- Worst case: O(n log n)
- In-place
- Not stable
 - Up-heap and down-heap bubbling does not preserve ordering of equal elements
- No improvement for nearly-ordered lists
 - Still builds heap, re-ordering elements twice
- However, no pathological cases
- Good alternative to quick sort in certain cases
 - Example: intro sort

- Good example of CS 240 cross-cutting
- Abstract data type (priority queue) to solve problem
 - Sorting data
- Concrete data structure (heap) to implement ADT w/ certain properties
 - No additional memory
 - O(1) access to parents and children
 - O(log n) additions and removals
- Big picture: clever data structure enabling an efficient algorithm