

CS 240
Fall 2014

Mike Lam, Professor

Heap Sort

Priority Queues

● FIFO abstract data structure w/ priorities

– Always remove item with highest priority

● Store key (priority) with value

– Store (key, value) tuples as items

– Goal: retrieve/remove the lowest key value

● Priority Queue ADT operations:

– P.add(k,v)

– P.remove_min()

– P.min()

– P.is_empty()

– len(P)

Priority Queues

● Sorting using PQs

– Add all the items to the PQ

– Remove all the items
● In sorted order

● Unsorted list implementation

– Similar to selection sort; phase 1 is O(n) and phase 2 is O(n2)

● Sorted list implementation
– Similar to insertion sort; phase 1 is O(n2) and phase 2 is O(n)

● Heap implementation

– New sorting algorithm: "heap sort"

– Not divide-and-conquer, but still O(n log n)

Heaps for Sorting

● Linked-based heap implementation

– Requires O(n) extra memory

– Can use min or max heaps

– Add operations: O(n log n)

– Remove operations: O(n log n)

● In-place array heap implementation
– No extra memory required

– Need to use max heaps

– Add operations: O(n log n) or O(n)

– Remove operations: O(n log n)

Heap Implementation

● Because heaps are complete trees, there is a very
convenient array-based representation

● Breadth-first traversal (level numbering)

– Assign each node in the tree an index

– The root is index 0

– The left subchild of node k is index 2k+1

– The right subchild of node k is index 2k+2

– The parent of node k is at index floor((k-1) / 2)

Heap Sort

● Basic idea: build heap in-place then repeatedly
remove max item

● Phase 1 ("heapification")

– Start with single-item max heap w/ first item in list

– Add each subsequent item to the heap
● Up-heap or down-heap bubbling

● Phase 2 (sorting)

– Repeatedly remove the maximum item and storing it at the
end of the list in a down-ward growing sorted region

– Down-heap bubbling to restore heap-order property

Heap Sort

def _up_heap(items, i):
 """ Perform up-heap bubbling, starting at index i."""
 if i > 0:
 p = (i-1)//2
 if items[i] > items[p]:
 items[i], items[p] = items[p], items[i]
 _up_heap(items, p) # tail recursion

def _down_heap(items, i, n):
 """ Perform down-heap bubbling on an n-element heap, starting at index i."""
 lc = 2*i+1
 rc = 2*i+2
 max_idx = i
 if lc < n and items[lc] > items[max_idx]: # check left child
 max_idx = lc
 if rc < n and items[rc] > items[max_idx]: # check right child
 max_idx = rc
 if max_idx != i: # swap
 items[i], items[max_idx] = items[max_idx], items[i]
 if max_idx < n:
 _down_heap(items, max_idx, n) # tail recursion

Heap Sort

def heap_sort(items):
 """ Sort the provided Python list in-place using heap sort."""
 length = len(items)

 # build heap
 for j in range(1, length):
 _up_heap(items, j)

 # build sorted list
 for j in range(length-1, 0, -1):
 items[0], items[j] = items[j], items[0] # extract max
 _down_heap(items, 0, j)

Example

● List: [17, 25, 100, 2, 3, 36, 1, 7, 19]

Example

● List: [17, 25, 100, 2, 3, 36, 1, 7, 19]

● Heap: [100, 19, 36, 17, 3, 25, 1, 2, 7]

Example

● List: [17, 25, 100, 2, 3, 36, 1, 7, 19]

● Heap: [100, 19, 36, 17, 3, 25, 1, 2, 7]

● Final: [1, 2, 3, 7, 17, 19, 25, 36, 100]

Heap Sort Analysis

● Phase 1 (heap grows):

– If each add() operation requires O(log n) time, this phase
will require O(n log n) time

– If we can argue that each add() operation requires only
O(1) time on average, this phase will require O(n) time

● Phase 2 (heap shrinks):

– Each remove_max() operation requires O(log n) time, so
this phase will require O(n log n) time

Heapification

● One option: up-heap bubbling
– Bubble up each newly added item to preserve heap-order

property

– Worst-case running time: O(n log n)

● Another option: down-heap bubbling
– Possible when we have all elements in advance

● Bottom-up heap construction

– Bubble down from each non-leaf node
● More nodes belong near the bottom of the tree, so this is better in

the long run (formal argument in 9.3.6)

– Worst-case running time: O(n)

Heapification

● Benefit of bottom-up construction

Image taken from: https://en.wikipedia.org/wiki/Heapsort

Heap Sort

● Worst case: O(n log n)
● In-place
● Not stable

– Up-heap and down-heap bubbling does not preserve ordering of equal
elements

● No improvement for nearly-ordered lists

– Still builds heap, re-ordering elements twice

● However, no pathological cases
● Good alternative to quick sort in certain cases

– Example: intro sort

Heap Sort

● Good example of CS 240 cross-cutting

● Abstract data type (priority queue) to solve problem

– Sorting data

● Concrete data structure (heap) to implement ADT w/
certain properties

– No additional memory

– O(1) access to parents and children

– O(log n) additions and removals

● Big picture: clever data structure enabling an efficient
algorithm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

