CS240 Fall 2014

Mike Lam, Professor

Trees

Tree Definitions

- Most generally: "an undirected graph with exactly one path between any pair of nodes"
- Textbook definition: a set of nodes with parent/child relationships
 - The "root" node has no parent
 - Each non-root node has a unique parent node
 - Parent nodes may have multiple children
- General conditions:
 - All nodes are connected
 - There are no cycles
 - Every edge is necessary to maintain connectivity
 - Contains n-1 edges for n nodes

Tree Definitions

- Parent: directly "above" in the hierarchy
- Child: directly "below" in the hierarchy
- Ancestor: "above" in the hierarchy
- *Descendant*: "below" in the hierarchy
- *Sibling:* child of the same parent
- External / Leaf: no children
- *Internal*: one or more children
- *Level*: all nodes with the same depth
- *Subtree*: a child node and all of its descendants

Tree Visualization

- "Above" and "below" refer to hierarchical relationships
- Trees can be visualized in any orientation/direction
 - Top-down is the most common
 - Left-right is also occasionally useful
 - Natural trees are bottom-up

Tree Definitions

- N-ary tree: each node has at most N children
 - 2-ary trees are called "binary trees"
 - Left and right subtrees
 - "Full" or "proper" if all nodes have either zero or two children
 - 3-ary trees are called "ternary trees"
 - Left, middle, and right subtrees
- Ordered tree: meaningful linear relationship among children of each node
 - Visualized with left-to-right arrangement of siblings
 - We will exploit ordered binary trees for fast searching

Depth vs. Height

- Node depth (textbook definition):
 - depth(root) = 0
 - depth(p) = 1+depth(p.parent)
 - Top-down definition
 - Informally: number of ancestors
- Node height (textbook definition):
 - height(leaf) = 0
 - height(p) = 1 + max([height(c) for c in p.children])
 - Bottom-up definition
 - Informally: number of edges to lowest descendant

Caveat

- Textbook definition of tree height:
 - The height of a tree with a single node is zero
 - In general, the height of a tree is the maximum leaf depth
- This is similar to our skip list definition of height
 - A skip list with a single sentinel node had a height of zero
- Intuition: the height of a tree is equal to the number of edges between the root and the lowest leaf

In general, level *d* has at most 2^d nodes Max # of nodes in a binary tree with height *h* is $2^{n+1}-1$

- Key observation: the number of nodes grows exponentially as the height increases
 - Alternatively: the height grows logarithmically as the number of nodes increases:

 $h(t) \in O(\log n(t))$

- This should lead to *O*(*log n*) or *O*(*n log n*) operations for tree-based structures
 - But only if we can exploit some kind of hierarchical structure in the data

- Similar to linked or skip lists
- Node object
 - Reference to data element
 - References to children
 - Alternatively: references to subtrees
 - If binary: "left" and "right"
 - Optional: reference to parent
- Tree object
 - Reference to root node
 - Could track # of nodes and/or tree height

- Space usage: *O*(*n*)
- Non-mutating operations:
 - is_empty: O(1)
 - height: O(n)
 - depth(p): $O(d_p+1)$
- Mutating operations:
 - insert (given location): O(1)
 - delete (given location): O(1)

- Textbook uses a "Position" wrapper for tree nodes
 - This is a generalization of the "iterator" concept
 - Also sometimes called "cursors"
- Textbook includes several layers of implementation
 - Tree
 - BinaryTree
 - LinkedBinaryTree
- Both of these are good ideas
 - But they are overly complicated for the concepts we wish to explore in this class
 - We will mostly use our own (simpler) implementations

```
class BinaryTree:
                                        11 11 11
    Represents a simple binary tree.
class Node:
    нин
        Internal node representation.
                                          11 11 11
    def __init__(self, value, left=None, right=None):
         """ Create a node with a given value and
             optional subtrees.
         11 11 11
         self.element = value
         self.left = left
         self.right = right
def __init__(self, root):
    """ Create a tree with the given root node.
                                                     11 11 11
    self. root = root
```

Tree Traversal

- Textbook uses Positions
 - We will just write traversal routines
- Preorder
 - Process parent first, then children
- Postorder
 - Process children first, then parent
- Inorder (binary trees only)
 - Process left child, then parent, then right child
- Breadth-first
 - Process each level of the tree in order

Tree Traversal

Tree Traversal

Preorder: 7, 2, 1, 6, 3, 4, 8, 5, 9 Postorder: 1, 6, 3, 2, 8, 9, 5, 4, 7 Breadth-first: 7, 2, 4, 1, 6, 3, 8, 5, 9

Recursive Traversal

- Recursive traversals
 - Preorder, postorder, and inorder
 - Process current node and children
 - The only difference is ordering
- Non-recursive traversal
 - Breadth-first
 - Use a queue to keep track of unprocessed nodes