

CS240
Fall 2014

Mike Lam, Professor

Trees

Trees

● Hierarchical data structure

531

7

6

4

9

8

2

Tree Definitions

● Most generally: "an undirected graph with exactly one path
between any pair of nodes"

● Textbook definition: a set of nodes with parent/child
relationships
– The "root" node has no parent

– Each non-root node has a unique parent node

– Parent nodes may have multiple children

● General conditions:
– All nodes are connected

– There are no cycles

– Every edge is necessary to maintain connectivity

– Contains n-1 edges for n nodes

Trees

● Hierarchical data structure

531

7

6

4

9

8

2

“root”

“parent of 1, 6, and 3”

"siblings" / “children of 2”

Trees

● Hierarchical data structure

531

7

6

4

9

8

2

“root”

“parent of 1, 6, and 3”

“ancestor of 2 and 3”

“descendant of 7 and 4”

"siblings" / “children of 2”

Trees

● Hierarchical data structure

531

7

6

4

9

8

2

“root”

“parent of 1, 6, and 3”

“leaf” / “external”

“internal”

“ancestor of 2 and 3”

“descendant of 7 and 4”

"siblings" / “children of 2”

Trees

● Hierarchical data structure

531

7

6

4

9

8

2

“root”

“parent of 1, 6, and 3”

“leaf” / “external”

“internal”

“ancestor of 2 and 3”

“descendant of 7 and 4”

"siblings" / “children of 2”

“subtree”

Trees

● Hierarchical data structure

531

7

6

4

9

8

2

“root”

“parent of 1, 6, and 3”

“leaf” / “external”

“internal”

“ancestor of 2 and 3”

“descendant of 7 and 4”

"siblings" / “children of 2”

“subtree”

“level”

Tree Definitions

● Parent: directly "above" in the hierarchy

● Child: directly "below" in the hierarchy

● Ancestor: "above" in the hierarchy

● Descendant: "below" in the hierarchy
● Sibling: child of the same parent
● External / Leaf: no children
● Internal: one or more children

● Level: all nodes with the same depth

● Subtree: a child node and all of its descendants

Tree Visualization

● "Above" and "below" refer to hierarchical relationships
● Trees can be visualized in any orientation/direction

– Top-down is the most common

– Left-right is also occasionally useful

– Natural trees are bottom-up

5

4

8

5

4

8

Tree Definitions

● N-ary tree: each node has at most N children

– 2-ary trees are called "binary trees"
● Left and right subtrees
● "Full" or "proper" if all nodes have either zero or two children

– 3-ary trees are called "ternary trees"
● Left, middle, and right subtrees

● Ordered tree: meaningful linear relationship among
children of each node

– Visualized with left-to-right arrangement of siblings

– We will exploit ordered binary trees for fast searching

Depth vs. Height

● Node depth (textbook definition):

– depth(root) = 0

– depth(p) = 1+depth(p.parent)

– Top-down definition

– Informally: number of ancestors

● Node height (textbook definition):

– height(leaf) = 0

– height(p) = 1 + max([height(c) for c in p.children])

– Bottom-up definition

– Informally: number of edges to lowest descendant

Caveat

● Textbook definition of tree height:
– The height of a tree with a single node is zero

– In general, the height of a tree is the maximum leaf depth

● This is similar to our skip list definition of height
– A skip list with a single sentinel node had a height of zero

● Intuition: the height of a tree is equal to the number of
edges between the root and the lowest leaf

Binary Tree Height

Binary Tree Height

Level 0
Nodes:

Level 1
Nodes:

Level 2
Nodes:

Level 3
Nodes:

Binary Tree Height

Level 0
Nodes: 1

Level 1
Nodes: 2

Level 2
Nodes: 4

Level 3
Nodes: 8

Binary Tree Height

Level 0
Nodes: 1

Level 1
Nodes: 2

Level 2
Nodes: 4

Level 3
Nodes: 8

In general, level d has at most 2d nodes
Max # of nodes in a binary tree with height h is 2n+1-1

Binary Tree Height

● Key observation: the number of nodes grows
exponentially as the height increases

– Alternatively: the height grows logarithmically as the
number of nodes increases:

h(t) ∈ O(log n(t))

● This should lead to O(log n) or O(n log n) operations
for tree-based structures

– But only if we can exploit some kind of hierarchical
structure in the data

Tree Implementation

● Similar to linked or skip lists

● Node object

– Reference to data element

– References to children
● Alternatively: references to subtrees
● If binary: "left" and "right"

– Optional: reference to parent

● Tree object
– Reference to root node

– Could track # of nodes and/or tree height

Tree Implementation

● Space usage: O(n)

● Non-mutating operations:

– is_empty: O(1)

– height: O(n)

– depth(p): O(dp+1)

● Mutating operations:

– insert (given location): O(1)

– delete (given location): O(1)

Tree Implementation

● Textbook uses a "Position" wrapper for tree nodes

– This is a generalization of the "iterator" concept

– Also sometimes called "cursors"

● Textbook includes several layers of implementation

– Tree

– BinaryTree

– LinkedBinaryTree

● Both of these are good ideas

– But they are overly complicated for the concepts we wish to
explore in this class

– We will mostly use our own (simpler) implementations

Tree Implementation

class BinaryTree:
 """ Represents a simple binary tree. """

 class _Node:
 """ Internal node representation. """

 def __init__(self, value, left=None, right=None):
 """ Create a node with a given value and
 optional subtrees.
 """
 self.element = value
 self.left = left
 self.right = right

 def __init__(self, root):
 """ Create a tree with the given root node. """
 self._root = root

Tree Traversal

● Textbook uses Positions

– We will just write traversal routines

● Preorder

– Process parent first, then children

● Postorder

– Process children first, then parent

● Inorder (binary trees only)

– Process left child, then parent, then right child

● Breadth-first

– Process each level of the tree in order

Tree Traversal

531

7

6

4

9

8

2

Tree Traversal

531

7

6

4

9

8

2

Preorder: 7, 2, 1, 6, 3, 4, 8, 5, 9
Postorder: 1, 6, 3, 2, 8, 9, 5, 4, 7
Breadth-first: 7, 2, 4, 1, 6, 3, 8, 5, 9

Recursive Traversal

● Recursive traversals

– Preorder, postorder, and inorder

– Process current node and children

– The only difference is ordering

● Non-recursive traversal

– Breadth-first

– Use a queue to keep track of unprocessed nodes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

