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Trees

● Hierarchical data structure

531

7

6

4

9

8

2



  

Tree Definitions

● Most generally: "an undirected graph with exactly one path
between any pair of nodes"

● Textbook definition: a set of nodes with parent/child
relationships
– The "root" node has no parent

– Each non-root node has a unique parent node

– Parent nodes may have multiple children

● General conditions:
– All nodes are connected

– There are no cycles

– Every edge is necessary to maintain connectivity

– Contains n-1 edges for n nodes
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Tree Definitions

● Parent:  directly "above" in the hierarchy

● Child:  directly "below" in the hierarchy

● Ancestor:  "above" in the hierarchy

● Descendant:  "below" in the hierarchy
● Sibling:  child of the same parent
● External / Leaf:  no children
● Internal:  one or more children

● Level:  all nodes with the same depth

● Subtree:  a child node and all of its descendants



  

Tree Visualization

● "Above" and "below" refer to hierarchical relationships
● Trees can be visualized in any orientation/direction

– Top-down is the most common

– Left-right is also occasionally useful

– Natural trees are bottom-up
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Tree Definitions

● N-ary tree: each node has at most N children

– 2-ary trees are called "binary trees"
● Left and right subtrees
● "Full" or "proper" if all nodes have either zero or two children

– 3-ary trees are called "ternary trees"
● Left, middle, and right subtrees

● Ordered tree: meaningful linear relationship among
children of each node

– Visualized with left-to-right arrangement of siblings

– We will exploit ordered binary trees for fast searching



  

Depth vs. Height

● Node depth (textbook definition):

– depth(root) = 0

– depth(p) = 1+depth(p.parent)

– Top-down definition

– Informally: number of ancestors

● Node height (textbook definition):

– height(leaf) = 0

– height(p) = 1 + max([height(c) for c in p.children])

– Bottom-up definition

– Informally: number of edges to lowest descendant



  

Caveat

● Textbook definition of tree height:
– The height of a tree with a single node is zero

– In general, the height of a tree is the maximum leaf depth

● This is similar to our skip list definition of height
– A skip list with a single sentinel node had a height of zero

● Intuition: the height of a tree is equal to the number of
edges between the root and the lowest leaf



  

Binary Tree Height
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Binary Tree Height

Level 0
Nodes: 1

Level 1
Nodes: 2

Level 2
Nodes: 4

Level 3
Nodes: 8

In general, level d has at most 2d nodes
Max # of nodes in a binary tree with height h is 2n+1-1



  

Binary Tree Height

● Key observation: the number of nodes grows
exponentially as the height increases

– Alternatively: the height grows logarithmically as the
number of nodes increases:

h(t)  ∈  O(log n(t))

● This should lead to O(log n) or O(n log n) operations
for tree-based structures

– But only if we can exploit some kind of hierarchical
structure in the data



  

Tree Implementation

● Similar to linked or skip lists

● Node object

– Reference to data element

– References to children
● Alternatively: references to subtrees
● If binary: "left" and "right"

– Optional: reference to parent

● Tree object
– Reference to root node

– Could track # of nodes and/or tree height



  

Tree Implementation

● Space usage: O(n)

● Non-mutating operations:

– is_empty: O(1)

– height: O(n)

– depth(p): O(dp+1)

● Mutating operations:

– insert (given location): O(1)

– delete (given location): O(1)



  

Tree Implementation

● Textbook uses a "Position" wrapper for tree nodes

– This is a generalization of the "iterator" concept

– Also sometimes called "cursors"

● Textbook includes several layers of implementation

– Tree

– BinaryTree

– LinkedBinaryTree

● Both of these are good ideas

– But they are overly complicated for the concepts we wish to
explore in this class

– We will mostly use our own (simpler) implementations



  

Tree Implementation

class BinaryTree:
    """ Represents a simple binary tree. """

    class _Node:
        """ Internal node representation. """

        def __init__(self, value, left=None, right=None):
            """ Create a node with a given value and
                optional subtrees.
            """
            self.element = value
            self.left = left
            self.right = right

    def __init__(self, root):
        """ Create a tree with the given root node. """
        self._root = root



  

Tree Traversal

● Textbook uses Positions

– We will just write traversal routines

● Preorder

– Process parent first, then children

● Postorder

– Process children first, then parent

● Inorder (binary trees only)

– Process left child, then parent, then right child

● Breadth-first

– Process each level of the tree in order
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Tree Traversal
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Preorder: 7, 2, 1, 6, 3, 4, 8, 5, 9
Postorder: 1, 6, 3, 2, 8, 9, 5, 4, 7
Breadth-first: 7, 2, 4, 1, 6, 3, 8, 5, 9



  

Recursive Traversal

● Recursive traversals

– Preorder, postorder, and inorder

– Process current node and children

– The only difference is ordering

● Non-recursive traversal

– Breadth-first

– Use a queue to keep track of unprocessed nodes
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