CS240
 Fall 2014

Mike Lam, Professor

Trees

Trees

- Hierarchical data structure

Tree Definitions

- Most generally: "an undirected graph with exactly one path between any pair of nodes"
- Textbook definition: a set of nodes with parent/child relationships
- The "root" node has no parent
- Each non-root node has a unique parent node
- Parent nodes may have multiple children
- General conditions:
- All nodes are connected
- There are no cycles
- Every edge is necessary to maintain connectivity
- Contains n-1 edges for n nodes

Trees

- Hierarchical data structure
"parent of 1,6 , and 3 "

"siblings" / "children of 2"

Trees

- Hierarchical data structure

"ancestor of 2 and 3 "

\square "root"
"parent of 1, 6, and 3"

"siblings" / "children of 2"

Trees

- Hierarchical data structure

"ancestor of 2 and 3"

\square "root"
"parent of 1, 6, and 3"

"siblings" / "children of 2"

Trees

- Hierarchical data structure

"ancestor of 2 and 3 "

\square "root"
"parent of 1, 6, and 3"

Trees

- Hierarchical data structure

```
"ancestor of 2 and 3"
```

\square
"root"
"parent of 1, 6, and 3"

Tree Definitions

- Parent: directly "above" in the hierarchy
- Child: directly "below" in the hierarchy
- Ancestor: "above" in the hierarchy
- Descendant: "below" in the hierarchy
- Sibling: child of the same parent
- External / Leaf: no children
- Internal: one or more children
- Level: all nodes with the same depth
- Subtree: a child node and all of its descendants

Tree Visualization

- "Above" and "below" refer to hierarchical relationships
- Trees can be visualized in any orientation/direction
- Top-down is the most common
- Left-right is also occasionally useful
- Natural trees are bottom-up

Tree Definitions

- N -ary tree: each node has at most N children
- 2-ary trees are called "binary trees"
- Left and right subtrees
- "Full" or "proper" if all nodes have either zero or two children
- 3-ary trees are called "ternary trees"
- Left, middle, and right subtrees
- Ordered tree: meaningful linear relationship among children of each node
- Visualized with left-to-right arrangement of siblings
- We will exploit ordered binary trees for fast searching

Depth vs. Height

- Node depth (textbook definition):
- depth(root) $=0$
- depth(p) = 1+depth(p.parent)
- Top-down definition
- Informally: number of ancestors
- Node height (textbook definition):
- height(leaf) $=0$
- height(p) = $1+\max ([h e i g h t(c)$ for c in p.children])
- Bottom-up definition
- Informally: number of edges to lowest descendant

Caveat

- Textbook definition of tree height:
- The height of a tree with a single node is zero
- In general, the height of a tree is the maximum leaf depth
- This is similar to our skip list definition of height
- A skip list with a single sentinel node had a height of zero
- Intuition: the height of a tree is equal to the number of edges between the root and the lowest leaf

Binary Tree Height

Binary Tree Height

Level 0 Nodes:

Level 1 Nodes:

Level 2 Nodes:

Level 3 Nodes:

Binary Tree Height

Binary Tree Height

Level 0
Nodes: 1

Level 2
Nodes: 4

Level 3 Nodes: 8

In general, level d has at most 2^{d} nodes
Max \# of nodes in a binary tree with height h is $2^{n+1}-1$

Binary Tree Height

- Key observation: the number of nodes grows exponentially as the height increases
- Alternatively: the height grows logarithmically as the number of nodes increases:

$$
h(t) \in O(\log n(t))
$$

- This should lead to $O(\log n)$ or $O(n \log n)$ operations for tree-based structures
- But only if we can exploit some kind of hierarchical structure in the data

Tree Implementation

- Similar to linked or skip lists
- Node object
- Reference to data element
- References to children
- Alternatively: references to subtrees
- If binary: "left" and "right"
- Optional: reference to parent
- Tree object
- Reference to root node
- Could track \# of nodes and/or tree height

Tree Implementation

- Space usage: O(n)
- Non-mutating operations:
- is_empty: $O(1)$
- height: $O(n)$
- depth(p): $O\left(d_{p}+1\right)$
- Mutating operations:
- insert (given location): $O(1)$
- delete (given location): O(1)

Tree Implementation

- Textbook uses a "Position" wrapper for tree nodes
- This is a generalization of the "iterator" concept
- Also sometimes called "cursors"
- Textbook includes several layers of implementation
- Tree
- BinaryTree
- LinkedBinaryTree
- Both of these are good ideas
- But they are overly complicated for the concepts we wish to explore in this class
- We will mostly use our own (simpler) implementations

Tree Implementation

class BinaryTree:
""" Represents a simple binary tree.
class _Node:
""" Internal node representation. """

```
        def __init__(self, value, left=None, right=None):
            """ Create a node with a given value and
                optional subtrees.
            """
            self.element = value
            self.left = left
            self.right = right
```

 def __init__(self, root):
 """ Create a tree with the given root node. """
 self._root = root

Tree Traversal

- Textbook uses Positions
- We will just write traversal routines
- Preorder
- Process parent first, then children
- Postorder
- Process children first, then parent
- Inorder (binary trees only)
- Process left child, then parent, then right child
- Breadth-first
- Process each level of the tree in order

Tree Traversal

Tree Traversal

Preorder: 7, 2, 1, 6, 3, 4, 8, 5, 9
Postorder: 1, 6, 3, 2, 8, 9, 5, 4, 7
Breadth-first: 7, 2, 4, 1, 6, 3, 8, 5, 9

Recursive Traversal

- Recursive traversals
- Preorder, postorder, and inorder
- Process current node and children
- The only difference is ordering
- Non-recursive traversal
- Breadth-first
- Use a queue to keep track of unprocessed nodes

