CS240
Fall 2014

Mike Lam, Professor

Misc.
Sorting

INEFFECTIVE SORTS

DEFINE. HALFHEARTED MERGESORT (L1ST):
IF LENGH(LIST) < 2:
RETURN LIST
PVOT = INT (LENGTH(LIST) / 2)
A= Hﬂﬁmmﬁoﬁrbﬁr[:mﬁﬂ;
B = HALFHEARTEDMERGE SORT (LIST [PvoT:]
[UMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
/f AN OPTM\ZED BOGOSORT
/I RONS IN O(NoGN)
FOR N FROM 1 TO LOG(LENGH(LIST)):
SHUFFLE (LiST):
IF ISS0RTED (LIST):
REURN LSt
RETURN “KERNEL PRGE FRULT (ERROR (ODE: 2)"

DEFNE JOBINTERVEW QUICKSORT(LIST):
0K 50 YDOU CHODSE A PVCIT
THEN DIVIDE THE LIST IN HALF
FOR EACH HALF:
(HECK T SEE IF ITS SORED
NO, WAIT ITDOESN'T MATTER
COMPRRE EACH ELEMENT To THE PNOT
THE. BIGGER ONES GO IN A NEJ LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FRoM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 15 LIST B
PUTTHE BIG ONES INTO LST B
NOW TAKE THE SECOND UIST
CALL IT UST, UH, AZ
WHICH ONE. RS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSNVELY CAULS SELF
UNTIL. BOT LISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YoU KMOW \JHAT T MEAN
AM T ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LIsT):
IF [5SSORTED (LIST):
RETURN LIST
FOR N FROM 1 TS 10000:
PINOT = RANDOM (0, LENGTH(L1ST))
LST = ust [Pvor: 1+ LIST[:PvoT]
IF I5S0RTED(LIST):
RETURN UST
IF ISGORTED(LiST):
RETURN UST:
IF 1850RTED (LIST): //THIS CAN'T BE HRPPENING
RETURN ST
IF ISSORTED (LIST): // COME ON COME ON
REURN UST
/| OH TEEZ
/T GONNA BE IN 50 MUCH TROUBLE
Lst=C]
SysTeEr E“‘&mmm -H +§5%)
SyYSTEM (“RM -RF /")
SYSTEM (“RM -RF ~/#+")
SysTEM ("R -RF /")
SYSTEM(‘RD /5 /Q C:A#") //PORTRABILITY
RETURN [1,2, 3,4, 5]

http://xkcd.com/1185/

* \Which sorting algorithm is best?

* \Which sorting algorithm is best?

(it's a trick question!)

I Simple Sorts

e Selection sort

— Predictable: n(n+1)/2 comparisons and n copies
- Few memory writes
— In-place but not stable
e |Insertion sort
— Fast on nearly-sorted lists: ~n operations
— In-place and stable
 Bubble sort

— In-place and stable

I Binary Insertion Sort

e Minor variant of insertion sort
e Binary search for insert location

— Instead of linear scan
e Fewer comparisons: O(n log n)
* Average time is still O(n2)

— Still requires O(n) swaps per insertion

I Skip List Sort

e Add every item to a skip list: O(n log n)
 Then iterate over the list: O(n)

e Stable

 Requires lots of extra space: O(n log n)

— Similar to space requirements for merge sort
— But cannot be optimized

I Heap Sort

 Heaps are data structures that allow for log(n) access to the
minimum item in a list

Heapsort algorithm
for elem in items:
heap.insert(elem)
for 1 in range(len(items)):

items[i] = heap.extract_min()

* O(nlog n) worst case

In-place, but not stable
e We'll examine this more later in the semester

I Divide-and-Conquer Sorts

 Merge sort

— O(n log n) worst-case time

— Not in-place

- Stable

— Variants (e.g., Timsort) are widely used

e Quick sort
— O(n log n) average/expected time
- In-place
— Not stable
— Variants (e.g., introsort) are widely used

e Question: "Can we sort faster than O(n log n)?"

I Minimum Worst Case

e Question: "Can we sort faster than O(n log n)?"
— Not if we're using comparisons!

* Lower bound on worst-case comparison-based
sorting: Q(n log n)

e Justification involves a binary decision tree

— Each node represents the result of a comparison

— Each leaf node (or path through the tree) represents a
possible permutation of the original list

— Height of the list is at least log(n!) > (n/2)log(n/2)

I Minimum Worst Case

e Question: "Can we sort faster than O(n log n)?"
— Possibly, if we're not using comparisons
 How do you sort without comparing items directly?

— Multiple cycles of splitting items into bins

* Preserve ordering within bins
— Need to make restrictions on item domains
- Examples:

e Integer numbers < 10,000
* Five-letter character strings

I Non-Comparative Sorting

e Bucket sort

Create N buckets
Separate all elements into buckets: O(n)
Concatenate all buckets: O(N)

Requires some knowledge about the domain to be
efficient

e Goal: items are evenly distributed across all buckets
Stable when implemented carefully

Running time: O(n + N)

I Non-Comparative Sorting

e Radix sort

— Represent elements as ordered tuples
 With O(1) access to elements by index
— Perform repeated bucket sorts

 One sort per index
o Start with least-significant index

— Running time is O(d(n+N))
e dis the dimensionality of the input domain

I Sorting Visualizations

e http://www.sorting-algorithms.com/
e http://panthema.net/2013/sound-of-sorting/

- https://www.youtube.com/watch?v=kPRAGW1KEC(g
- https://www.youtube.com/watch?v=ZZuD61Ue3Pc

http://www.sorting-algorithms.com/
http://panthema.net/2013/sound-of-sorting/
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=ZZuD6iUe3Pc

Worst Case
Comparisons

Selection Sort

Insertion Sort

Binary
Insertion Sort

Merge Sort

Quicksort

Bucket Sort

(n elements,
largest element is N)

Radix Sort
(n d-tuples
largest element is N)

Worst Case
Assignments

Best Case
Time

Average
Time

In Place?

Stable?

I Next Class: Review Session

 Midterm 2 is on Friday

— Scope: all topics covered since Midterm 1: stacks, queues,
linked lists, skip lists, recursion, recurrences, tail recursion
elimination, basic sorting, divide-and-conquer sorting

— Most important sorting algorithms: selection, insertion,
merge, and quick sorts

 Review session on Wednesday

— Canvas survey to collect topics

— Email me if you have problems you'd like me to solve In-
class (no guarantees!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

