

CS240
Fall 2014

Mike Lam, Professor

Quick Sort

!!
!

!!??

Merge Sort

● Merge sort

– Sort sublists (divide & conquer)

– Merge sorted sublists (combine)

● All the "hard work" is done after recursing
● Hard to do "in-place"

– The sublists need to be interleaved during merging

– Doing this cleanly requires O(n) extra space at minimum

● We'd like an O(n log n) algorithm that works "in-place"
– No extra space required

Quick Sort

● Quick sort
– Choose a pivot value

– Partition into sublists (divide)

– Sort sublists (conquer)

– Merge sorted sublists (combine)

● All the "hard work" is done before recursing
– O(n) at each level

● Some work (combining) is done after recursing
– Still O(n) at each level

– This is actually unnecessary in the in-place version

Partitioning

● Choose a pivot value

– Easy choices: first, middle, or last

– More complicated: random, median of three

● Split list into two or three sublists

– 1) Less than and 2) Equal or Greater than

– 1) Less than, 2) Equal to, and 3) Greater than

– This operation can be done in-place or with auxiliary lists

● Often implemented in a separate function

– Like the merge() operation in merge sort

Quick Sort Implementation
def quick_sort(items):
 n = len(items)

 # base case: 0 or 1 items (already sorted)
 if n < 2:
 return

 # choose pivot
 pivot = items[-1] # use last item

 # divide (a.k.a. partition)
 less = []; equal = []; greater = []
 for elem in items:
 if elem < pivot:
 less.append(elem)
 elif elem > pivot:
 greater.append(elem)
 else:
 equal.append(elem)

 # conquer (recurse)
 quick_sort(less)
 quick_sort(greater)

 # combine
 i = 0
 for elem in less:
 items[i] = elem
 i += 1
 for elem in equal:
 items[i] = elem
 i += 1
 for elem in greater:
 items[i] = elem
 i += 1

Quick Sort Implementation

● Good: Relatively simple and easy to understand

● Bad: Uses lots of extra lists (similar to merge sort)
● Alternative: "in-place" implementation

– Instead of building new lists during partitioning, use
swapping to re-arrange sublists in the original list

– This can be a little difficult to get exactly right

– It's worth practicing

In-place Quick Sort

● quick_sort(items, first=0, last=len(items)-1):

– pivot = choose_pivot()

– pivot_index = partition(items, pivot)

– quick_sort(items, first, pivot_index-1)

– quick_sort(items, pivot_index+1, last)

In-place Quick Sort
def quick_sort_inplace(items):
 """ Sort the provided Python list using in-place quick sort."""
 quick_sort_inplace_helper(items, 0, len(items)-1)

def quick_sort_inplace_helper(items, first, last):
 """ Recursive helper for in-place quick sort."""

 # base case: 0 or 1 items (already sorted)
 if first >= last:
 return

 # choose pivot
 pivot = items[last] # use last item

 # divide (a.k.a. partition)
 left = first
 right = last - 1 # ignore pivot for now
 while left <= right:

 # scan for values that are in the wrong partition
 # and swap them
 while left <= right and items[left] < pivot:
 left += 1
 while left <= right and pivot < items[right]:
 right -= 1
 if left <= right:
 tmp = items[left]
 items[left] = items[right]
 items[right] = tmp
 left += 1
 right -= 1

 # swap pivot with the leftmost item in the second sublist
 tmp = items[left]
 items[left] = items[last]
 items[last] = tmp

 # conquer (recurse)
 quick_sort_inplace_helper(items, first, left-1)
 quick_sort_inplace_helper(items, left+1, last)

 # no need to combine b/c we sorted in-place

Quick Sort Analysis

● O(n) time per level

● How many levels? ?
levels

O(n) time

(this is the key difference between analysis
of merge sort and analysis of quick sort)

Quick Sort Analysis

● O(n) time per level
● How many levels?

– Best case: ~ log2 n

● Input size is halved each time
● Overall: O(n log n)

– Worst case: ~ n
● Input size decreases by O(1) each time
● Overall: O(n2)

– Average/expected: ~ log4/3 n

● Equally likely to choose "good" or "bad" pivot
● Asymptotically same as best case
● Overall: O(n log n)

~ log n
levels

O(n) time

Pivots

● Choice of pivot is important!

– Determines the size of the two sublists
● And therefore (indirectly) the recursion depth

– Optimal: median of all values in the list
● Sublists will be of equal length
● Guarantees O(n log n) sort (just like merge sort)
● Chicken-and-egg problem: calculating the median requires the

list to be sorted!

Pivots

● Choice of pivot is important!

– Non-optimal: deterministic selection
● Choose first item, middle item, or last item
● Picking the last item simplifies some implementations
● Picking the middle item works well for nearly-sorted lists
● All three have pathological cases that are O(n2)

– Picking the first or last is particularly problematic because the
pathological case is a sorted list!

– Better options: random or median-of-three
● Randomized guarantees O(n log n) with high probability
● Median-of-three is cheaper to compute and is similar in practice

Stability

● Quick sort is not stable
– Partition re-orders items within sublists

● Stable variant requires O(n) extra space
– This erases the largest advantage of quick sort over merge sort

Conclusions

● Quick sort is often the fastest comparative sort
in practice

– Expected O(n log n) running time in most cases

– Requires no extra space
● Except for log n stack frames for recursion

– Watch out for pathological cases!

– Many common tweaks to improve quick sort
● Median-of-three pivot selection
● Switch to a different sort for pathological cases
● Switch to a different sort when n is small

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

