

CS240
Fall 2014

Mike Lam, Professor

Sorting

Warm-up
Job Interview Question

Choose one of the three basic sorts
below and write a Python function
that performs that sort on a list:

● Selection Sort
● Insertion Sort
● Bubble Sort

Sorting

● “Sort” (verb)
– “To place (records) in order, as numerical or alphabetical, based

on the contents of one or more keys contained in each record.”

● Classic problem
– Ubiquitous

– Many approaches

– Many minor optimizations

– Common interview question

"Indeed, I believe that virtually every important aspect of programming arises
somewhere in the context of sorting or searching!" - Donald Knuth (1998)

Sorting Objectives

● From the syllabus:
– “Implement a variety of sorting algorithms, including insertion

sort, selection sort, merge sort, quicksort, and heap sort.”

– “State the asymptotic running times of the algorithms ...
studied in this course, and explain the practical behavior of
algorithms”

● More particularly:
– Understand and articulate the sorting problem

– Differentiate between various sort types

– Implement examples of each sort type

Sorting

● Best case for sorting: O(n)

– Must examine/move every item

● Worst (reasonable) case for sorting: O(n2)

– Must compare every item with every other item

● There *are* worse sorts...

– Example: Bogosort, Bozosort

– For more info, see "Sorting the Slow Way"

● Most useful sorting algorithms are O(n log n) average case

file:///Users/lam/Teaching/cs240/2014_08_Fall/slides/Sorting%20the%20Slow%20Way:%20An%20Analysis%20of%20PerverselyAwful%20Randomized%20Sorting%20Algorithms

Sorting

● Algorithm evaluation criteria:

– Best case running time

– Worst case running time

– Average case running time

– Memory requirements (“space”)

– Stability

Sorting Stability

● If two items are equal as determined by the sort order
and a given sorting algorithm will never reorder them
while sorting, that sorting algorithm is stable

● Unstable sorts can always be modified to be stable by
changing the sort order to incorporate prior order
– (a < b && index(a) < index(b))

– May require extra time or space

● Not an issue if elements are indistinguishable

● Only a problem in some domains

Basic Sorting Algorithms

● Selection sort

– Growing sorted region at beginning of list

– “Select” smallest unsorted value and append to sorted region

● Insertion sort

– Growing sorted region at beginning of list

– “Insert” the next unsorted value into sorted region

● Bubble sort
– Growing sorted region at end of list

– Largest unsorted value “bubbles up” to sorted region

Selection Sort

def selection_sort(items):
 """ Sort the provided Python list
 in-place using selection sort.
 """
 for j in range(len(items) - 1):
 min_index = j
 for i in range(j + 1, len(items)):
 if items[i] < items[min_index]:
 min_index = i
 tmp = items[j]
 items[j] = items[min_index]
 items[min_index] = tmp

Insertion Sort

def insertion_sort(items):
 """ Sort the provided Python list
 in-place using insertion sort.
 """
 for j in range(1, len(items)):
 element = items[j]
 i = j
 while 0 < i and element < items[i-1]:
 items[i] = items[i - 1]
 i -= 1
 items[i] = element

Bubble Sort

def bubble_sort(items):
 """ Sort the provided Python list
 in-place using bubble sort.
 """
 for j in range(len(items)-1, -1, -1):
 for i in range(j):
 if items[i+1] < items[i]:
 tmp = items[i]
 items[i] = items[i+1]
 items[i+1] = tmp

Bubble Sort

def bubble_sort(items):
 """ Sort the provided Python list
 in-place using short-circuited bubble sort.
 """
 for j in range(len(items)-1, -1, -1):
 swapped = False
 for i in range(j):
 if items[i+1] < items[i]:
 tmp = items[i]
 items[i] = items[i+1]
 items[i+1] = tmp
 swapped = True
 if not swapped:
 break

Analysis

● Selection Sort

– First pass does n-1 comparisons

– Second pass does n-2 comparisons

– etc.

● Insertion Sort

– Worst case is the same as selection sort

– Suppose each inserted element is equally likely to
belong at every location in the sorted region

– Average case does roughly half the comparisons of
worst case

T (n) = ∑
1

n−1

i =
n(n−1)

2
∈ O (n2)

T (n) ≈
(n+4)(n−1)

4
∈ O (n2)

Basic Sorting Algorithms

● Selection sort

– Best: O(n2) Worst: O(n2) Average: O(n2)

● Insertion sort

– Best: O(n) Worst: O(n2) Average: O(n2)

● Bubble sort (sort by exchange)

– Best: O(n) Worst: O(n2) Average: O(n2)

(with short-circuit check; it is O(n2) otherwise)

Basic Sorting Algorithms

● Selection sort

– Best: O(n2) Worst: O(n2) Average: O(n2) NOT STABLE

● Insertion sort

– Best: O(n) Worst: O(n2) Average: O(n2) STABLE

● Bubble sort (sort by exchange)

– Best: O(n) Worst: O(n2) Average: O(n2) STABLE

(with short-circuit check; it is O(n2) otherwise)

T (n) = ∑
1

n−1

i =
n(n−1)

2
∈ O (n2)

T (n) = n−1 T (n) =
n(n−1)

2
T (n) ≈

(n+4)(n−1)
4

(every case)
(would require insertion instead

of swapping to be stable)

Shell Sort

● Generalization of insertion and bubble sort

● Concept: k-sorting

– Starting anywhere in the list, sort every kth element

– Repeat for successively smaller k values

– The selected values of k are called the "gap sequence"

● Running time is hard to analyze

– Depends on which gap sequence is chosen

– Can be O(n3/2) or O(n4/3)

● Not stable

Application

● If n < 1000, any algorithm will probably do

– Don't overcomplicate!

● If data modification is expensive, selection sort could
be a good option (fewest actual writes)

● If timing predictability is necessary, use selection sort

● If the list is nearly sorted, use insertion sort

● If stability is important, avoid selection and shell sorts

● None of these run in O(n log n)

– How do we achieve this?

Divide and Conquer

● Divide-and-conquer algorithm

– If n < threshold, solve directly

– Otherwise, split input into disjoint sets
● Recursively solve subproblems
● Combine subproblem solutions

● How could this paradigm be applied to sorting?

38 27 43 3 9 82 10

Merge Sort

● Visualization:

Alternate visualization
(both graphics from Wikipedia)

https://en.wikipedia.org/wiki/Merge_sort#mediaviewer/File:Merge-sort-example-300px.gif

Merge Sort Implementation
def merge_sort(items):

 """ Sort the provided Python list using merge sort."""

 n = len(items)

 # base case: 0 or 1 items (already sorted)

 if n < 2:

 return

 # divide-and-conquer

 mid = n // 2

 left_side = items[0:mid]

 right_side = items[mid:n]

 merge_sort(left_side) # sort left side

 merge_sort(right_side) # sort right side

 # merge

 i = 0; j = 0

 while i + j < n:

 if not j < len(right_side) or \

 (i < len(left_side) and left_side[i] <= right_side[j]):

 items[i+j] = left_side[i]

 i += 1

 else:

 items[i+j] = right_side[j]

 j += 1

Merge Sort Analysis

● There are levels of recursion

● O(n) time per level

● Thus, the entire sort is O(n log n)

log n
levels

O(n) time

⌈ logn ⌉

Merge Sort Analysis

● There are levels of recursion

● O(n) time per level

● Thus, the entire sort is O(n log n)

● Can also solve a recurrence:

T (0) = 1
T (n) = 2T (n /2)+cn

T (n) = 2i T (n /2i)+i n i= log n
T (n) = n+n log n
T (n) ∈ O (n log n)

log n
levels

O(n) time

⌈ log n ⌉

Merge Sort

● Alternative implementations in Section 12.2.5

– Queue-based implementation (simpler logic)

– Non-recursive implementation (slightly faster)

● Copying arrays is expensive

– Not worth it once n is relatively small

– Optimization: just call insertion sort when n is small

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

