

CS240
Fall 2014

Mike Lam, Professor

Recurrences

Announcement

● A solution to PA2 has been posted on Canvas

● Most of the functions can be re-used between PA2 and PA3

– As long as they are written in terms independent of the
underlying representation

● You may use the posted implementations in PA3, but you
should give credit in your documentation if you choose to do so

def is_subset(self, other):
for i in range(self._len):

found = False
for j in range(other._len):

if self._a[i] == other._a[j]:
found = True

if not found:
return False

return True

def is_subset(self, other):
for elem in self:

if elem not in other:
return False

return True

BAD:
GOOD:

Announcement

● Special session on Friday (10/17)

● Combined meeting of CS 240/280

– CS 280: Topics: Competitive programming

– Compete in worldwide ACM competitions

– Meets weekly for practices

● Meet in ISAT 243 at normal time

– Short lecture on binary search algorithms

– Join CS 280 students in ISAT 143

– Work on problems in teams

Recurrences

● Recurrence: an equation that expresses the value of
a function in terms of its value at another point

● Similarity to recursion: a problem solution expressed
in terms of solutions to subproblems

T (1)=1
T (n)=1+2 T (n−1)

T (1)=1

T (n)=n+T (n
2)

Finding Recurrences

● Function in terms of running time: T(n)

● Find the base case

– Probably T(0) or T(1)

– How many operations? (usually a constant; often 0 or 1)

● Find the recursive case

– How many operations?

– How many recursive calls?
● Usually once (single recursion) or twice (binary recursion)
● Could be more

– How does n change in new calls to T()?
● Most common: T(n-1) or T(n/2)

Solving Recurrences

● Can be difficult; not always possible!
● One method: Backward substitution

– Substitute for n
● Substitute into itself
● Repeat as necessary

– Identify pattern
● Express using new term i

– Substitute for i
● In terms of n
● Eliminate recursion

– Clean up
● Find closed form (evaluable in finite # of operations)

Example

● What is the running time of "foo"?

 def foo(x):

 if x <= 1:

 return 1

 else:

 return x * foo(x-1)

Example

● What is the running time of "foo"?

 def foo(x):

 if x <= 1:

 return 1

 else:

 return x * foo(x-1)

Recursion!
Probably need
a recurrence

Example

● What is the running time of "foo"?

 def foo(x):

 if x <= 1:

 return 1

 else:

 return x * foo(x-1)

n = x

Find base case (initial condition)
and recursive case (inductive condition)

Example

● What is the running time of "foo"?

 def foo(x):

 if x <= 1:

 return 1

 else:

 return x * foo(x-1)

T (0)=0
T (n)=1+T (n−1)n = x

Find base case (initial condition)
and recursive case (inductive condition)

Example

● What is the running time of "foo"?

 def bar(x):

 if len(x) == 0:

 return 0

 else:

 return x[0] + bar(x[1:])

Example

● What is the running time of "foo"?

 def bar(x):

 if len(x) == 0:

 return 0

 else:

 return x[0] + bar(x[1:])

n = len(x)

Find base case (initial condition)
and recursive case (inductive condition)

Example

● What is the running time of "foo"?

 def bar(x):

 if len(x) == 0:

 return 0

 else:

 return x[0] + bar(x[1:])

T (0)=0
T (n)=1+T (n−1)n = len(x)

Find base case (initial condition)
and recursive case (inductive condition)

Example

● Different functions; same recurrence!

Example

● Let's try some values:

T (0)=0
T (n)=1+T (n−1)

Example

● Let's try some values:

T (0)=0
T (1)=1+T (0)=1+0=1
T (2)=1+T (1)=1+1=2
T (3)=1+T (2)=1+2=3

T (0)=0
T (n)=1+T (n−1)

What's the pattern?

Example

● Let's try some values:

T (0)=0
T (1)=1+T (0)=1+0=1
T (2)=1+T (1)=1+1=2
T (3)=1+T (2)=1+2=3

T (0)=0
T (n)=1+T (n−1)

What's the pattern?

T(n) = n

Example

● We think we've "solved" the recurrence

– It looks right, anyway

● That's not a very formal argument
● Let's make this more rigorous

Solving Recurrences

● Method: Backward substitution
– Substitute for n

● Substitute into itself
● Repeat as necessary

– Identify pattern
● Express using new term i

– Substitute for i
● In terms of n
● Eliminate recursion

– Clean up
● Find closed form

Can be useful to
rewrite as T(x) = f(x)

Example

● Substitute for n:

● Then identify the pattern:

T (n)=1+T (n−1)

T (n)=1+(1+T ((n−1)−1))=2+T (n−2)
T (n)=2+(1+T ((n−2)−1))=3+T (n−3)

We need to get rid of the recursive term
So we want T(0) here; what should "i" be?
Solve "n – i = 0" for i

Aha! A pattern!

T (n)=i+T (n−i)

Example

● Substitute for i: i = n

● Then clean up:

T (n)=i+T (n−i)

T (n)=(n)+T (n−(n))
T (n)=n+T (0)=n+0
T (n)=n

This matches our previous guess!

Example

● What is the running time?
 def hanoi(n, src, dst, tmp):

 if n == 1:

 print("move from " + str(src) +

 " to " + str(dst))

 else:

 hanoi(n-1, src, tmp, dst)

 hanoi(1, src, dst, tmp)

 hanoi(n-1, tmp, dst, src)

Example

● What is the running time?
 def hanoi(n, src, dst, tmp):

 if n == 1:

 print("move from " + str(src) +

 " to " + str(dst))

 else:

 hanoi(n-1, src, tmp, dst)

 hanoi(1, src, dst, tmp)

 hanoi(n-1, tmp, dst, src)

T (1) = 1
T (n) = T (n−1)+T (1)+T (n−1) = 1+2T (n−1)

Example

● Try some values

T (1)=1
T (2)=1+2T (1)=1+2(1)=3
T (3)=1+2T (2)=1+2(3)=7
T (4)=1+2T (3)=1+2(7)=15
T (5)=1+2T (4)=1+2(15)=31

Example

● Substitute for n and identify pattern

T (n) = 1+2T (n−1)
T (n) = 1+2(1+2T ((n−1)−1)) = 1+2+4 T (n−2)
T (n) = 1+2+4(1+2T ((n−1)−2)) = 1+2+4+8 T (n−3)
T (n) = 1+2+4+...+2iT (n−i)

T (n) = ∑
j=0

i−1

2 j + 2iT (n−i)

Solve "n – i = 1" to find value for i

Example

● Substitute for i and clean up (i = n-1)

T (n) = ∑
j=0

i−1

2 j + 2i T (n−i)

T (n) = ∑
j=0

(n−1)−1

2 j + 2(n−1)T (n−(n−1))

T (n) = ∑
j=0

n−2

2 j + 2(n−1)T (0)

T (n) = ∑
j=0

n−2

2 j + 2(n−1)

T (n) = ∑
j=0

n−1

2 j = 2n−1

Exercise

● Solve the recurrence: T (0)=1
T (n)=2T (n−1)

Exercise

● Solve the recurrence: T (1)=0

T (n)=1+T (n
2)(assume n = 2k)

Master's Theorem

● Generic recurrence solution patterns for divide &
conquer algorithms

T (n) = aT (n
b
)+O (nk)

If a>b k ,then T (n) ∈ O (nlogb a)

If a<b k ,then T (n) ∈ O (nk)

If a=bk , then T (n) ∈ O (nk log n)

Pattern:

Recurrences in CS240

● Finding recurrences

– Provide the recurrence in terms of T(n)

● Solving recurrences

– Provide the closed-form solution in terms of n

– Provide some indication of how you found it
● Back substitution
● Recognized pattern

– Verify that it matches some actual values of T(n)

More Exercises

● See "Concise Notes" Chapter 14
– Check your answers w/ Wolfram Alpha

● Watch for an upcoming homework
● Possible external review session

● Useful math facts:

∑
0

n

bn = bn+1−1 n=bk ⇒ k= logb n

∑
i=1

n

i =
n(n+1)

2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

