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Announcement

● A solution to PA2 has been posted on Canvas

● Most of the functions can be re-used between PA2 and PA3

– As long as they are written in terms independent of the
underlying representation

● You may use the posted implementations in PA3, but you
should give credit in your documentation if you choose to do so

def is_subset(self, other):
for i in range(self._len):

found = False
for j in range(other._len):

if self._a[i] == other._a[j]:
found = True

if not found:
return False

return True

def is_subset(self, other):
for elem in self:

if elem not in other:
return False

return True

BAD:
GOOD:



  

Announcement

● Special session on Friday (10/17)

● Combined meeting of CS 240/280

– CS 280: Topics: Competitive programming

– Compete in worldwide ACM competitions

– Meets weekly for practices

● Meet in ISAT 243 at normal time

– Short lecture on binary search algorithms

– Join CS 280 students in ISAT 143

– Work on problems in teams



  

Recurrences

● Recurrence: an equation that expresses the value of
a function in terms of its value at another point

● Similarity to recursion: a problem solution expressed
in terms of solutions to subproblems

T (1)=1
T (n)=1+2 T (n−1)

T (1)=1

T (n)=n+T (n
2 )



  

Finding Recurrences

● Function in terms of running time: T(n)

● Find the base case

– Probably T(0) or T(1)

– How many operations? (usually a constant; often 0 or 1)

● Find the recursive case

– How many operations?

– How many recursive calls?
● Usually once (single recursion) or twice (binary recursion)
● Could be more

– How does n change in new calls to T()?
● Most common: T(n-1) or T(n/2)



  

Solving Recurrences

● Can be difficult; not always possible!
● One method: Backward substitution

– Substitute for n
● Substitute into itself
● Repeat as necessary

– Identify pattern
● Express using new term i

– Substitute for i
● In terms of n
● Eliminate recursion

– Clean up
● Find closed form (evaluable in finite # of operations)



  

Example

● What is the running time of "foo"?

    def foo(x):

        if x <= 1:

            return 1

        else:

            return x * foo(x-1)



  

Example

● What is the running time of "foo"?

    def foo(x):

        if x <= 1:

            return 1

        else:

            return x * foo(x-1)

Recursion!
Probably need
a recurrence



  

Example

● What is the running time of "foo"?

    def foo(x):

        if x <= 1:

            return 1

        else:

            return x * foo(x-1)

n = x

Find base case (initial condition)
and recursive case (inductive condition)



  

Example

● What is the running time of "foo"?

    def foo(x):

        if x <= 1:

            return 1

        else:

            return x * foo(x-1)

T (0)=0
T (n)=1+T (n−1)n = x

Find base case (initial condition)
and recursive case (inductive condition)



  

Example

● What is the running time of "foo"?

    def bar(x):

        if len(x) == 0:

            return 0

        else:

            return x[0] + bar(x[1:])



  

Example

● What is the running time of "foo"?

    def bar(x):

        if len(x) == 0:

            return 0

        else:

            return x[0] + bar(x[1:])

n = len(x)

Find base case (initial condition)
and recursive case (inductive condition)



  

Example

● What is the running time of "foo"?

    def bar(x):

        if len(x) == 0:

            return 0

        else:

            return x[0] + bar(x[1:])

T (0)=0
T (n)=1+T (n−1)n = len(x)

Find base case (initial condition)
and recursive case (inductive condition)



  

Example

● Different functions; same recurrence!



  

Example

● Let's try some values:

T (0)=0
T (n)=1+T (n−1)



  

Example

● Let's try some values:

T (0)=0
T (1)=1+T (0)=1+0=1
T (2)=1+T (1)=1+1=2
T (3)=1+T (2)=1+2=3

T (0)=0
T (n)=1+T (n−1)

What's the pattern?



  

Example

● Let's try some values:

T (0)=0
T (1)=1+T (0)=1+0=1
T (2)=1+T (1)=1+1=2
T (3)=1+T (2)=1+2=3

T (0)=0
T (n)=1+T (n−1)

What's the pattern?

T(n) = n



  

Example

● We think we've "solved" the recurrence

– It looks right, anyway

● That's not a very formal argument
● Let's make this more rigorous



  

Solving Recurrences

● Method: Backward substitution
– Substitute for n

● Substitute into itself
● Repeat as necessary

– Identify pattern
● Express using new term i

– Substitute for i
● In terms of n
● Eliminate recursion

– Clean up
● Find closed form

Can be useful to
rewrite as T(x) = f(x)



  

Example

● Substitute for n:

● Then identify the pattern:

T (n)=1+T (n−1)

T (n)=1+(1+T ((n−1)−1))=2+T (n−2)
T (n)=2+(1+T ((n−2)−1))=3+T (n−3)

We need to get rid of the recursive term
So we want T(0) here; what should "i" be?
Solve "n – i = 0" for i

Aha! A pattern!

T (n)=i+T (n−i)



  

Example

● Substitute for i: i = n

● Then clean up:

T (n)=i+T (n−i)

T (n)=(n)+T (n−(n))
T (n)=n+T (0)=n+0
T (n)=n

This matches our previous guess!



  

Example

● What is the running time?
    def hanoi(n, src, dst, tmp):

        if n == 1:

            print("move from " + str(src) + 

                  " to " + str(dst))

        else:

            hanoi(n-1, src, tmp, dst)

            hanoi(  1, src, dst, tmp)

            hanoi(n-1, tmp, dst, src)



  

Example

● What is the running time?
    def hanoi(n, src, dst, tmp):

        if n == 1:

            print("move from " + str(src) + 

                  " to " + str(dst))

        else:

            hanoi(n-1, src, tmp, dst)

            hanoi(  1, src, dst, tmp)

            hanoi(n-1, tmp, dst, src)

T (1) = 1
T (n) = T (n−1)+T (1)+T (n−1) = 1+2T (n−1)



  

Example

● Try some values

T (1)=1
T (2)=1+2T (1)=1+2(1)=3
T (3)=1+2T (2)=1+2(3)=7
T (4)=1+2T (3)=1+2(7)=15
T (5)=1+2T (4)=1+2(15)=31



  

Example

● Substitute for n and identify pattern

T (n) = 1+2T (n−1)
T (n) = 1+2(1+2T ((n−1)−1)) = 1+2+4 T (n−2)
T (n) = 1+2+4(1+2T ((n−1)−2)) = 1+2+4+8 T (n−3)
T (n) = 1+2+4+...+2iT (n−i)

T (n) = ∑
j=0

i−1

2 j + 2iT (n−i)

Solve "n – i = 1" to find value for i



  

Example

● Substitute for i and clean up (i = n-1)

T (n) = ∑
j=0

i−1

2 j + 2i T (n−i)

T (n) = ∑
j=0

(n−1)−1

2 j + 2(n−1)T (n−(n−1))

T (n) = ∑
j=0

n−2

2 j + 2(n−1)T (0)

T (n) = ∑
j=0

n−2

2 j + 2(n−1)

T (n) = ∑
j=0

n−1

2 j = 2n−1



  

Exercise

● Solve the recurrence: T (0)=1
T (n)=2T (n−1)



  

Exercise

● Solve the recurrence: T (1)=0

T (n)=1+T (n
2 )(assume n = 2k)



  

Master's Theorem

● Generic recurrence solution patterns for divide &
conquer algorithms

T (n) = aT (n
b
)+O (nk)

If a>b k ,then T (n) ∈ O (nlogb a)

If a<b k ,then T (n) ∈ O (nk)

If a=bk , then T (n) ∈ O (nk log n)

Pattern:



  

Recurrences in CS240

● Finding recurrences

– Provide the recurrence in terms of T(n)

● Solving recurrences

– Provide the closed-form solution in terms of n

– Provide some indication of how you found it
● Back substitution
● Recognized pattern

– Verify that it matches some actual values of T(n)



  

More Exercises

● See "Concise Notes" Chapter 14
– Check your answers w/ Wolfram Alpha

● Watch for an upcoming homework
● Possible external review session

● Useful math facts:

∑
0

n

bn = bn+1−1 n=bk ⇒ k= logb n

∑
i=1

n

i =
n(n+1)

2
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