

CS240
Fall 2014

Mike Lam, Professor

Recursion

recursion

 n. [ri-kur-zhuh n]

 1. See “recursion”

Recursion

● The expression of a problem solution in a way that
depends on solutions to smaller instances of the
same problem

● For some problems, a recursive solution is cleaner
than the corresponding iterative solution

● Classics:
– A list is either 1) an “empty list” or 2) an item followed

by a list
– fact(n) = 1 if n ≤ 1, n * fact(n-1) if n>1
– Tower of Hanoi / Brahma

Recursion

● The language runtime handles the actual
semantics of recursive behavior

● Usually, it tracks recursive calls using a stack
● Every function call pushes a new entry (called

an “activation record” or “frame”) to the stack
● A record is popped when a function returns,

and execution returns to the function on the
top of the stack

Recursion

● “Call stack”
● Details are

machine- and
language-
dependent

● More info in
CS430

Image from Wikipedia article “Call Stack”

Recursion

● S ingle vs. binary vs. multiple recursion
– fact(n) = 1 if n ≤ 1, n * fact(n-1) if n > 1
– fib(n) = 1 if n ≤ 1, fib(n-1) + fib(n-2) if n > 1

● Trace: fact(4) vs. fib(4)

Recursion

● Single vs. binary vs. multiple recursion
– fact(n) = 1 if n ≤ 1, n * fact(n-1) if n > 1
– fib(n) = 1 if n ≤ 1, fib(n-1) + fib(n-2) if n > 1

● Trace: fact(4) vs. fib(4)

fact(4)

fact(3)

fact(2)

fact(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

Binary Search

def find(array, item):

 return helper(array, item, 0, len(array))

def helper(array, item, left, right):

 mid = (right-left)//2 + left

 if array[mid] > item:

 return helper(array, item, left, mid)

 elif array[mid] < item:

 return helper(array, item, mid+1, right)

 else:

 return mid < len(array) and array[mid] == item

Binary Search

● Trace: find([1,4,5,7,9,11,15], 5)

Binary Search

● Trace: find([1,4,5,7,9,11,15], 5) left = 0
right = 7

Binary Search

● Trace: find([1,4,5,7,9,11,15], 5)

[1, 4, 5, 7, 9, 11, 15]

left = 0
right = 7

mid = 3

Binary Search

● Trace: find([1,4,5,7,9,11,15], 5)

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

left = 0
right = 7

mid = 3

left = 0
right = 3

Binary Search

● Trace: find([1,4,5,7,9,11,15], 5)

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

left = 0
right = 7

mid = 3

left = 0
right = 3

mid = 1

Binary Search

● Trace: find([1,4,5,7,9,11,15], 5)

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

left = 0
right = 7

mid = 3

left = 0
right = 3

mid = 1

left = 2
right = 3

Binary Search

● Trace: find([1,4,5,7,9,11,15], 5)

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

[1, 4, 5, 7, 9, 11, 15]

left = 0
right = 7

mid = 3

left = 0
right = 3

mid = 1

left = 2
right = 3

mid = 2

A note on the word “binary”

● Binary search is not binary recursion!
– Only recurses on one half of the list
– So it is single recursion

● Binary sum is binary recursion
– Recurses on both sides of the list

Binary Search

● What is the running time of a binary search?

Binary Search

● What is the running time of a binary search?
● Need a way to express recursion costs

mathematically
● Write a function!

– Express T(n) in terms of itself

Binary Search

● What is the running time of a binary search?
● Need a way to express recursion

mathematically
● Write a function!

– Express T(n) in terms of itself
● For binary search: T(n) = 1 + T(n/2)

– To search n items, do one comparison then
recurse on the appropriate half-list

Recurrences

● Recursive formulas are called “recurrences”
● We still want to find a “closed-form” description

– Something like “2n” or “log2 n” or “5n2”

● We will talk more on Wednesday about how to
solve recurrences

● But first, we need to be comfortable tracing
recursive code

Exercise 1

● Given the following code:

 def foo(n):

 if n < 2:

 return 1

 else:

 return n * foo(n-1)

● Trace the following call:

 print(str(foo(4)))

Exercise 2

● Given the following code:

 def bar(text):

 if len(text) <= 1:

 return True

 return text[0] == text[-1] and

 bar(text[1:-1])

● Trace the following call:

 print(str(bar("abbaba")))

Exercise 3

● Given the following code:

 def baz(x, n):

 if n == 0:

 return 1

 y = baz(x, n//2)

 if n % 2 == 1:

 return x * y * y

 else:

 return y * y

● Trace the following call:

 print(str(baz(2, 10)))

Exercise 4

● Given the following code:

 def hanoi(n, src, dst, tmp):

 if n == 1:

 print("move from " + str(src) +

 " to " + str(dst))

 else:

 hanoi(n-1, src, tmp, dst)

 hanoi(1, src, dst, tmp)

 hanoi(n-1, tmp, dst, src)

● Trace the following call:

 hanoi(3, “a”, “c”, “b”)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

