CS240 Fall 2014

Mike Lam, Professor

recursion

n. [rikur-zhuh n]
1. See "recursion"

Recursion

Recursion

- The expression of a problem solution in a way that depends on solutions to smaller instances of the same problem
- For some problems, a recursive solution is cleaner than the corresponding iterative solution
- Classics:
- A list is either 1) an "empty list" or 2) an item followed by a list
- $\boldsymbol{f a c t}(\mathrm{n})=1$ if $n \leq 1, \mathrm{n}$ * $\boldsymbol{f a c t}(\mathrm{n}-1)$ if $n>1$
- Tower of Hanoi / Brahma

Recursion

- The language runtime handles the actual semantics of recursive behavior
- Usually, it tracks recursive calls using a stack
- Every function call pushes a new entry (called an "activation record" or "frame") to the stack
- A record is popped when a function returns, and execution returns to the function on the top of the stack

Recursion

- "Call stack"
- Details are machine- and languagedependent
- More info in CS430

Recursion

- Single vs. binary vs. multiple recursion $-\operatorname{fact}(n)=1$ if $n \leq 1, \quad n * f a c t(n-1)$ if $n>1$ $-\mathrm{fib}(\mathrm{n})=1$ if $n \leq 1, \quad \mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$ if $n>1$
- Trace: fact(4)
vs. fib(4)

Recursion

- Single vs. binary vs. multiple recursion - fact(n) $=1$ if $n \leq 1, \quad n * f a c t(n-1)$ if $n>1$ $-\mathrm{fib}(\mathrm{n})=1$ if $n \leq 1, \quad$ fib($n-1)+\mathrm{fib}(\mathrm{n}-2)$ if $n>1$
- Trace: fact(4)
vs. fib(4)

$\operatorname{fact}(4)$
$\operatorname{fact}(3)$
$\operatorname{fact}(2)$

fact(1)
fib(1) fib(0)

Binary Search

def find(array, item):
return helper(array, item, 0, len(array))
def helper(array, item, left, right):
mid $=(r i g h t-l e f t) / / 2+1 e f t$
if array[mid] > item:
return helper(array, item, left, mid)
elif array[mid] < item:
return helper(array, item, mid+1, right)
else:
return mid < len(array) and array[mid] == item

Binary Search

- Trace: find([1,4,5,7,9,11,15], 5)

Binary Search

- Trace: find([1,4,5,7,9,11,15], 5)
left $=0$
right $=7$

Binary Search

- Trace: $\operatorname{find}([1,4,5,7,9,11,15], 5)$
left $=0$ right $=7$
$\operatorname{mid}=3$
$[1,4,5,7,9,11,15]$

Binary Search

- Trace: find([1,4,5,7,9,11,15], 5)
left $=0$ right $=7$
$\operatorname{mid}=3$
[1, 4, 5, 7, 9, 11, 15]
$[1,4,5,7,9,11,15] \quad \begin{gathered}\text { let }=0 \\ \text { rign }=3 \\ =3\end{gathered}$

Binary Search

- Trace: find([1,4,5,7,9,11,15], 5)
left $=0$
right $=7$

$$
\begin{array}{ll}
\text { mid }=3 & {[1,4,5,7,9,11,15]} \\
& {[1,4,5,7,9,11,15]} \\
\text { mid }=1 & {[1,4,5,7,9,11,15]}
\end{array}
$$

$$
\text { left }=0
$$

$$
\text { right }=3
$$

Binary Search

- Trace: find([1,4,5,7,9,11,15], 5)
left $=0$
right $=7$

$$
\begin{array}{lll}
\operatorname{mid}=3 & {[1,4,5,7,9,11,15]} & \\
& {[1,4,5,7,9,11,15]} & \begin{array}{l}
\text { left = 0 } \\
\text { right }=3
\end{array} \\
\text { mid }=1 & {[1,4,5,7,9,11,15]} & \\
& {[1,4,5,7,9,11,15]} & \begin{array}{l}
\text { left = 2 } \\
\text { right }=3
\end{array}
\end{array}
$$

Binary Search

- Trace: find([1,4,5,7,9,11,15], 5)

```
mid = 3
    [1, 4, 5, 7, 9, 11, 15]
    [1, 4, 5, 7, 9, 11, 15]
                                    left = 0
                                    right = 3
mid}=
    [1, 4, 5, 7, 9, 11, 15]
    [1,4,5,7,9,11,15] }\begin{array}{l}{\mathrm{ left=2}}\\{\mathrm{ righ= =3}}
mid =2
    [1, 4, 5, 7, 9, 11, 15]
```


A note on the word "binary"

- Binary search is not binary recursion!
- Only recurses on one half of the list
- So it is single recursion
- Binary sum is binary recursion
- Recurses on both sides of the list

Binary Search

-What is the running time of a binary search?

Binary Search

-What is the running time of a binary search?

- Need a way to express recursion costs mathematically
- Write a function!
- Express $T(n)$ in terms of itself

Binary Search

- What is the running time of a binary search?
- Need a way to express recursion mathematically
- Write a function!
- Express $T(n)$ in terms of itself
- For binary search: $T(n)=1+T(n / 2)$
- To search n items, do one comparison then recurse on the appropriate half-list

Recurrences

- Recursive formulas are called "recurrences"
- We still want to find a "closed-form" descriptio - Something like2̌n" or "log n" or "5月"
- We will talk more on Wednesday about how to solve recurrences
- But first, we need to be comfortable tracing recursive code

Exercise 1

- Given the following code: def foo(n):

$$
\text { if } n<2:
$$

return 1
else:
return n * foo($n-1$)

- Trace the following call: print(str(foo(4)))

Exercise 2

- Given the following code: def bar(text):

$$
\begin{aligned}
& \text { if } \operatorname{len}(\text { text })<=1: \\
& \text { return True } \\
& \text { return text[0] == text }[-1] \text { and } \\
& \quad \operatorname{bar}(\text { text }[1:-1])
\end{aligned}
$$

- Trace the following call: print(str(bar("abbaba")))

Exercise 3

- Given the following code:

```
def baz(x, n):
    if n == 0:
        return 1
    y = baz(x, n//2)
    if n % 2 == 1:
    return x * y * y
    else:
    return y * y
```

- Trace the following call: print(str(baz(2, 10)))

Exercise 4

- Given the following code:

```
def hanoi(n, src, dst, tmp):
    if n == 1:
    print("move from " + str(src) +
    " to " + str(dst))
    else:
    hanoi(n-1, src, tmp, dst)
    hanoi( 1, src, dst, tmp)
    hanoi(n-1, tmp, dst, src)
```

- Trace the following call: hanoi(3, "a", "c", "b")

