

CS240
Fall 2014

Mike Lam, Professor

Advanced Linked Lists

????

Review: Singly-Linked Lists

● S ingly-linked list:

"a" "b" "c" None

head tail

single link
per node

Circularly-Linked Lists

● Keep a single node reference
● Useful for round-robin scheduling

– New operation: rotate()

● Can be used to implement regular list
– No need to track both head and tail
– head = tail.next

Doubly-Linked Lists

● Two references: prev and next
– To predecessor and successor nodes

● Allows insert and remove at both ends
– Can now implement stacks, queues, and deques

Sentinels

● Placeholder (“fake”) nodes at head and/or tail

2head tail

head tailEmpty list:

After append(2):

2 3head tailAfter append(3):

2 3 5head tailAfter append(5):

Sentinels

● Simplifies logic of insertion and removal

def append(self, e):
 new_node = Node(e)
 new_node.prev = self._tail
 new_node.next = None
 if self.is_empty():
 self._head = new_node
 self._tail = new_node
 else:
 self._tail.next = new_node
 self._tail = new_node

def append(self, e):
 new_node = Node(e)
 new_node.prev = self._tail.prev
 new_node.next = self._tail
 self._tail.prev.next = new_node
 self._tail.prev = new_node

2 3 5head tail

head tailEmpty list:

Populated list:

Deques

● Double-ended queue
● Two sets of insert/remove methods:

– insert_first and delete_first

– insert_last and delete_last

● Implementation using doubly-linked list w/
sentinels

Tradeoffs

● Advantages of Arrays
– O(1) access to elements by index
– Proportionally fewer actual operations

● Calculation and dereference vs. memory allocation
and reference re-arranging

– Proportionally less memory usage
● Both arrays and linked lists can be referential
● Arrays require at most 2n space overhead, while

linked lists are at least 2n (or 3n for doubly-linked lists)

Tradeoffs

● Advantages of linked lists
– Worst-case O(1) bounds

● No amortized bounds

– O(1) insertions and removals at arbitrary positions
● No need to shift elements
● This is a HUGE advantage!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

