

CS240
Fall 2014

Mike Lam, Professor

Linked Lists

def parse(text):
 tokens = text.split()
 for t in tokens:

Upcoming Career Fair

● CS Career Fair
– Date: Wed, October 15, 10am-3pm
– Location: nTelos Room (ISAT 259)
– Looking for CS majors/minors only
– Jobs and internships

● Interview prep session
– Date: Mon, October 6, 6:30pm
– Location: HHS 2203
– Free food!
– Bring your resumé and cover letter!

Retrospective

● Arrays are great
– O(1) access time to any element
– Amortized O(1) insertion and removal
– Referential arrays allow arbitrary-sized objects

● There are still disadvantages
– Requires large chunks of reserved memory
– Insertion/removal in the middle is expensive

Retrospective

● Goal: Do less work when inserting and removing in
the middle of our lists

2 3 5 8

Retrospective

● Goal: Do less work when inserting and removing in
the middle of our lists

● Let's "pull apart" the array

2 3 5 8

2 3 5 8

Retrospective

● Goal: Do less work when inserting and removing in
the middle of our lists

● Let's "pull apart" the array

● And add links between all the items

2 3 5 8

2 3 5 8

2 3 5 8

Linked Lists

● This is a "linked list"

● Every item has a "next" pointer/reference
– Last item has a null (None) "next" pointer

● Add and remove items by manipulating the pointers
● Keep external pointers to the beginning ("head") and

end ("tail") of the list

2 3 5 8

Singly-Linked Lists

● Singly-linked list:

"a" "b" "c" None

head tail

single link
per node

Singly-Linked Lists

● Inserting at the head:
– newest = Node(e)

– newest.next = L.head

– L.head = newest

– L.size += 1

Singly-Linked Lists

● Inserting at the tail:
– newest = Node(e)

– newest.next = None

– L.tail.next = newest

– L.tail = newest

– L.size += 1

Singly-Linked Lists

● Removing from the head:
– if L.head is None:

● raise Exception("List is empty")

– L.head = L.head.next

– L.size -= 1

Singly-Linked Lists

● Removing from the tail:
– if L.tail is None:

● raise Exception("List is empty")

– L.tail = ???

– L.size -= 1

● Problem: Can't access previous node

Singly-Linked Lists

● Removing from the tail:
– if L.tail is None:

● raise Exception("List is empty")

– L.tail = ???

– L.size -= 1

● Problem: Can't access previous node
– Solution: Track previous nodes as well

● (doubly-linked lists)

Challenge

● Given a singly-linked list called "data", write a
snippet of code that will print out all of the
values in the list

Singly-Linked Lists

● Insert: O(1)
– if you have a reference to the location
– O(n) if the new location is index-based or the list

needs to be sorted
● Delete: O(1)

– if you have a reference to the item
– O(n) if you have to look for it

● Indexed access or search: O(n)

Linked Stack

● Consider stack implementation using a singly-
linked list

Linked Stack

● Consider stack implementation using a singly-
linked list
– Insert and remove at the head
– Push, pop, and top are O(1)

Linked Queue

● Consider queue implementation using a singly-
linked list

Linked Queue

● Consider queue implementation using a singly-
linked list
– Insert at tail, remove from head

● Can 't remove from the tail!

– Enqueue, dequeue, and first are O(1)

Looking ahead

● What if we kept two pointers?
– "next" and "prev"
– This is a "doubly-linked list"

● What if tail.next pointed to the head?
– This is a "circularly-linked list"

● What if we kept multiple pointers to places
further down the list?
– This is a "skip list"

Reminder

● PA2 is due next Wednesday (Oct 8) at 23:59
(11:59pm)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

