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Queues

● First in, first out (FIFO) sequence data structure
● Basic operations

– Q.enqueue(e): add element e to back

– Q.dequeue(): remove and return front element

– Q.first(): return (but do not remove) front element

– Q.is_empty(): return True if no elements

– len(Q): return number of elements



  

Queues

● q = Queue()

front/back

q:



  

Queues

● q.enqueue(5)

5

back

q:

front



  

Queues

● q.enqueue(3)

5q: 3

backfront



  

Queues

● len(q) == 2

5q: 3

backfront



  

Queues

● q.dequeue() == 5

q: 3

backfront



  

Queues

● q.is_empty() == False

q: 3

backfront



  

Queues

● q.dequeue() == 3

q:

front/back



  

Queues

● q.is_empty() == True

q:

front/back



  

Queue Implementation

● Challenge: operations manipulate both ends

0 1 2 3Stack:

push

pop

0 1 2 3 enqueuedequeue
Queue:

front back

top



  

Queue Implementation

● Bad implementation: remove front element for 
every dequeue()
– Would need to shift/copy every other item
– Θ(n)!

● Better idea: leave the elements alone
– Keep track of the position of “front”



  

Queue Implementation

front/back

enqueue(0)

new queue:



  

Queue Implementation

0

front back

enqueue(1)

enqueue(0)



  

Queue Implementation

0

front back

0 1enqueue(1)

front back

enqueue(2)

enqueue(0)



  

Queue Implementation

0

front back

0 1enqueue(1)

front back

0 1 2enqueue(2)

front back

enqueue(3)

enqueue(0)



  

Queue Implementation

0

front back

0 1enqueue(1)

front back

0 1 2enqueue(2)

front back

0 1 2 3enqueue(3)

front back

enqueue(0)



  

Queue Implementation

0 1 2 3
enqueue(0); enqueue(1)
enqueue(2); enqueue(3)

front back

dequeue()



  

Queue Implementation

0 1 2 3
enqueue(0); enqueue(1)
enqueue(2); enqueue(3)

front back

1 2 3dequeue()

front back

dequeue()



  

Queue Implementation

0 1 2 3
enqueue(0); enqueue(1)
enqueue(2); enqueue(3)

front back

1 2 3dequeue()

front back

2 3dequeue()

front back

enqueue(4)



  

Queue Implementation

0 1 2 3
enqueue(0); enqueue(1)
enqueue(2); enqueue(3)

front back

1 2 3dequeue()

front back

2 3dequeue()

front back

2 3enqueue(4)

front back



  

Queue Implementation

● Problem: end of array reached, but it's not full!
– Need to “wrap around” and re-use space
– Use a circular array

● Instead of  data[i]
● use  data[(front + i) % cap]

3 4 0Queue: 1 2

back front



  

Queue Implementation

● What about resizing?
– Chance to “reset” front location

2 3 0 1

Queue:

front/back

0 1 2 3

front back



  

Queue Implementation

● Using Array from PA2
– from t_array import Array

– Creation:   a = Array(<capacity>)

– Get length:  len(a)

– Access:  a[i]

– Modify:  a[i] = x

– Clean up: a.free()



  

Queue Analysis

Operation Running Time

Q.enqueue(x)

Q.dequeue()

Q.front()

Q.is_empty()

len(Q)

* = 
amortized



  

Queue Analysis

Operation Running Time

Q.enqueue(x) O(1)*

Q.dequeue() O(1)*

Q.front() O(1)

Q.is_empty() O(1)

len(Q) O(1)

* = 
amortized



  

Queues

● Applications
– Process scheduling
– Printer queue
– Web server responses
– I/O buffering



  

Iterators

● Reading: Sections 1.8 and 2.3.4
● Lazy evaluation for iteration over data structures
● Need to use optional iterable parameter in Set 

constructor
● Need to provide Set iterator for PA2

– Two choices for implementation
● Iterator classes (easier to understand)
● Generator method (easier to code)

– Demo code on Piazza



  

Queue Implementation

● Using Array from PA2
– from t_array import Array

– Creation:   a = Array(<capacity>)

– Get length:  len(a)

– Access:  a[i]

– Modify:  a[i] = x

– Clean up: a.free()



  

PA2 General Hints

● Don't be overwhelmed
– Most functions are <10 lines of code
– Don't over-complicate things

● Test early and often
– Write a function, write a test
– Advice: don't try the provided unit tests until you have 

finished most of the project
● Reuse code

– Many functions can be implemented by calling others
– This is easier and better!



  

Stacks

● Changes to stack.py
– Resize checks new_cap against _len, not _cap

● Allow shrinking as well as expanding, although this has 
not been implemented

– Set top element to None in pop()
● Visualization is now more intuitive
● Aids Python garbage collector
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