

CS240
Fall 2014

Mike Lam, Professor

Queues

Image from http://www.boxtechnologies.com/box-solutions/retail-banking/

Queues

● First in, first out (FIFO) sequence data structure
● Basic operations

– Q.enqueue(e): add element e to back

– Q.dequeue(): remove and return front element

– Q.first(): return (but do not remove) front element

– Q.is_empty(): return True if no elements

– len(Q): return number of elements

Queues

● q = Queue()

front/back

q:

Queues

● q.enqueue(5)

5

back

q:

front

Queues

● q.enqueue(3)

5q: 3

backfront

Queues

● len(q) == 2

5q: 3

backfront

Queues

● q.dequeue() == 5

q: 3

backfront

Queues

● q.is_empty() == False

q: 3

backfront

Queues

● q.dequeue() == 3

q:

front/back

Queues

● q.is_empty() == True

q:

front/back

Queue Implementation

● Challenge: operations manipulate both ends

0 1 2 3Stack:

push

pop

0 1 2 3 enqueuedequeue
Queue:

front back

top

Queue Implementation

● Bad implementation: remove front element for
every dequeue()
– Would need to shift/copy every other item
– Θ(n)!

● Better idea: leave the elements alone
– Keep track of the position of “front”

Queue Implementation

front/back

enqueue(0)

new queue:

Queue Implementation

0

front back

enqueue(1)

enqueue(0)

Queue Implementation

0

front back

0 1enqueue(1)

front back

enqueue(2)

enqueue(0)

Queue Implementation

0

front back

0 1enqueue(1)

front back

0 1 2enqueue(2)

front back

enqueue(3)

enqueue(0)

Queue Implementation

0

front back

0 1enqueue(1)

front back

0 1 2enqueue(2)

front back

0 1 2 3enqueue(3)

front back

enqueue(0)

Queue Implementation

0 1 2 3
enqueue(0); enqueue(1)
enqueue(2); enqueue(3)

front back

dequeue()

Queue Implementation

0 1 2 3
enqueue(0); enqueue(1)
enqueue(2); enqueue(3)

front back

1 2 3dequeue()

front back

dequeue()

Queue Implementation

0 1 2 3
enqueue(0); enqueue(1)
enqueue(2); enqueue(3)

front back

1 2 3dequeue()

front back

2 3dequeue()

front back

enqueue(4)

Queue Implementation

0 1 2 3
enqueue(0); enqueue(1)
enqueue(2); enqueue(3)

front back

1 2 3dequeue()

front back

2 3dequeue()

front back

2 3enqueue(4)

front back

Queue Implementation

● Problem: end of array reached, but it's not full!
– Need to “wrap around” and re-use space
– Use a circular array

● Instead of data[i]
● use data[(front + i) % cap]

3 4 0Queue: 1 2

back front

Queue Implementation

● What about resizing?
– Chance to “reset” front location

2 3 0 1

Queue:

front/back

0 1 2 3

front back

Queue Implementation

● Using Array from PA2
– from t_array import Array

– Creation: a = Array(<capacity>)

– Get length: len(a)

– Access: a[i]

– Modify: a[i] = x

– Clean up: a.free()

Queue Analysis

Operation Running Time

Q.enqueue(x)

Q.dequeue()

Q.front()

Q.is_empty()

len(Q)

* =
amortized

Queue Analysis

Operation Running Time

Q.enqueue(x) O(1)*

Q.dequeue() O(1)*

Q.front() O(1)

Q.is_empty() O(1)

len(Q) O(1)

* =
amortized

Queues

● Applications
– Process scheduling
– Printer queue
– Web server responses
– I/O buffering

Iterators

● Reading: Sections 1.8 and 2.3.4
● Lazy evaluation for iteration over data structures
● Need to use optional iterable parameter in Set

constructor
● Need to provide Set iterator for PA2

– Two choices for implementation
● Iterator classes (easier to understand)
● Generator method (easier to code)

– Demo code on Piazza

Queue Implementation

● Using Array from PA2
– from t_array import Array

– Creation: a = Array(<capacity>)

– Get length: len(a)

– Access: a[i]

– Modify: a[i] = x

– Clean up: a.free()

PA2 General Hints

● Don't be overwhelmed
– Most functions are <10 lines of code
– Don't over-complicate things

● Test early and often
– Write a function, write a test
– Advice: don't try the provided unit tests until you have

finished most of the project
● Reuse code

– Many functions can be implemented by calling others
– This is easier and better!

Stacks

● Changes to stack.py
– Resize checks new_cap against _len, not _cap

● Allow shrinking as well as expanding, although this has
not been implemented

– Set top element to None in pop()
● Visualization is now more intuitive
● Aids Python garbage collector

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

