

CS240
Fall 2014

Mike Lam, Professor

Stacks

The Little Boat

The storm tossed the little boat like a
cheap sneaker in an old washing
machine. The three drunken fishermen
were used to such treatment, of
course, but not the tree salesman, who
even as a stowaway now felt that he
had overpaid for the voyage.

1. Will the salesman die?

2. What color is the boat?

3. And what about Naomi?

Stacks

● Last in, first out (LIFO) sequence data structure
● Basic operations

– S.push(e): add element e to top

– S.pop(): remove and return top element

– S.top(): return (but do not remove) top element

– S.is_empty(): return True if no elements

– len(S): return number of elements

Stacks

● s = Stack()

top

s:

Stacks

● s.push(5)

5

top

s:

Stacks

● s.push(3)

5

top

s: 3

Stacks

● len(s) == 2

5

top

s: 3

Stacks

● s.pop() == 3

5

top

s:

Stacks

● s.is_empty() == False

5

top

s:

Stacks

● s.pop() == 5

top

s:

Stacks

● s.is_empty() == True

s:

top

Stack Implementation

● Using Array from PA2
– from t_array import Array

– Creation: a = Array(<capacity>)

– Get length: len(a)

– Access: a[i]

– Modify: a[i] = x

– Clean up: a.free()

Stack Analysis

Operation Running Time

S.push(x)

S.pop()

S.top()

S.is_empty()

len(S)

* =
amortized

Stack Analysis

Operation Running Time

S.push(x) O(1)*

S.pop() O(1)*

S.top() O(1)

S.is_empty() O(1)

len(S) O(1)

* =
amortized

Stacks

● Applications
– Reversing a list
– Storing browser history
– Storing undo actions
– Recursion (calling stack)

● Grows "downward" in memory!

Application: Bracket Matching

● Problem: Check for matching parentheses "()",
brackets "[]", and braces "{}"

● Hard to do with simple iteration
– How to keep track of what we're trying to match?

● Use a stack!

Application: Bracket Matching

● Problem: Check for matching parentheses
"()", brackets "[]", and braces "{}"

● Algorithm:
– for each letter in text

● if letter in LEFT_OPS
– stack.push(letter)

● if letter in RIGHT_OPS
– if stack.is_empty() or letter != stack.pop()

● return False

– return stack.is_empty()

Application: Postfix Notation

● Postfix notation
– Also referred to as "Reverse Polish Notation" (RPN)

● Normal "infix" notation: 2 + 3
● Postfix notation: 2 3 +
● Prefix notation: + 2 3
● Why is postfix notation interesting?

Application: Postfix Notation

● Infix notation is hard to evaluate
● Consider: 2 + 3 * 4

– (2 + 3) * 4 = 20

– 2 + (3 * 4) = 14

● Need to evaluate the "*" first
– How to tell this without looking ahead?
– Use postfix notation: 3 4 * 2 +

Application: Postfix Notation

● Evaluate: 3 4 * 2 +
● Algorithm:

– for each word in expression
● if word is a number

– stack.push(word)
● if word is an operator

– op1 = stack.pop()
– op2 = stack.pop()
– stack.push(op1 <op> op2)

– return stack.pop()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

