
  

CS240
Fall 2014

Mike Lam, Professor

Analysis of Python Sequences



  

Python Sequence Analysis
F ill in the follow ing tables:

Operation Running 
Time

len(data) O(1)

data[i] O(1)

data.count(value)

data.index(value) O(k+1)

value in data

data1 == data2

data[i:j]

data1 + data2

c * data

Operation Running 
Time

data[i] = value

data.append(value) O(1) *

data.insert(i, value)

data.pop()

data.pop(i)

data.remove(value)

data1.extend(data2)

data.reverse() O(n)

data.sort()

data, data1, and data2 are sequences with lengths of n, n
1
, and n

2
, respectively

Non-mutating behaviors: lists and tuples Mutating behaviors: lists only

k is the index of the leftmost occurrence; m is the leftmost index of disagreement or min(n
1
,n
2
)

* amortized



  

Python Sequence Analysis
● len(data)     O(1)

– return the length of data
● data[i]      O(1)

– access the element at index i
● data.count(value)

– return the number of times value occurs in data
● data.index(value)      O(k+1)

– return the index of the leftmost occurrence of value in data
● value in data

– return True if value is present in data
● data1 == data2

– return True if the arrays contain the same elements
● data[i:j]

– extract sublist of items from index i up to but not including j
● data1 + data2

– create new list with all items from data2 appended to data1
● c * data

– create new list with the items in data duplicated c times

● data[i] = value

– change the element at index i
● data.append(value)    O(1) *

– add value to the end of data
● data.insert(i, value)

– add value at index i
● data.pop()

– remove last value from data
● data.pop(i)

– remove item at index i from data
● data.remove(value)

– remove leftmost occurrence of value 
from data

● data1.extend(data2)

– append all items from data2 to data1
● data.reverse()     O(n)

– reverse the ordering of items in data
● data.sort()

– sort the items in data

* amortized



  

Non-mutating behaviors

● len(data):     O(1)
– List: we track the length of the list as it changes
– Tuple: it is set at initialization and never changed
– Both are just lookups



  

Non-mutating behaviors

● data[i]:     O(1)
– Arrays can be indexed in O(1)

● One multiplication, one addition
● In Python, also one memory dereference



  

Non-mutating behaviors

● data.count(value):     O(n)
– Must examine every element to see if it matches



  

Non-mutating behaviors

● data.index(value):     O(k+1)
– k is the index of the leftmost occurrence

● k = n if value is not in data

– Must examine elements up to and including the one 
we're looking for

– O(n) is also true, because n > k



  

Non-mutating behaviors

● value in data:     O(k+1)
– Same as previous

● No less work to return a boolean than to return the index



  

Non-mutating behaviors

● data1 == data2:     O(m+1)
– m is the leftmost index of disagreement or 

min(n1,n2)

– Worst case: examine all elements from smallest 
list/tuple

– However, if we find a non-matching element, we 
can short-circuit



  

Non-mutating behaviors

● data[i:j]:     O(j-i)
– Need to copy j-i elements
– No need to visit other elements
– Remember: data[i] provides O(1) access to 

individual elements



  

Non-mutating behaviors

● data1 + data2:     O(n1 + n2)

– Need to copy all elements of both lists/tuples



  

Non-mutating behaviors

● c * data:     O(cn)
– Need to copy all elements c times



  

Python Sequence Analysis
Fill in the following tables:

Operation Running 
Time

len(data) O(1)

data[i] O(1)

data.count(value) O(n)

data.index(value) O(k+1)

value in data O(k+1)

data1 == data2 O(m+1)

data[i:j] O(j-i)

data1 + data2 O(n
1
+n

2
)

c * data O(cn)

Operation Running 
Time

data[i] = value

data.append(value) O(1) *

data.insert(i, value)

data.pop()

data.pop(i)

data.remove(value)

data1.extend(data2)

data.reverse() O(n)

data.sort()

data, data1, and data2 are sequences with lengths of n, n
1
, and n

2
, respectively

k is the index of the leftmost occurrence; m is the leftmost index of disagreement or min(n
1
,n
2
)

Non-mutating behaviors: lists and tuples Mutating behaviors: lists only



  

Python Sequence Analysis
● len(data)     O(1)

– return the length of data
● data[i]      O(1)

– access the element at index i
● data.count(value)

– return the number of times value occurs in data
● data.index(value)      O(k+1)

– return the index of the leftmost occurrence of value in data
● value in data

– return True if value is present in data
● data1 == data2

– return True if the arrays contain the same elements
● data[i:j]

– extract sublist of items from index i up to but not including j
● data1 + data2

– create new list with all items from data2 appended to data1
● c * data

– create new list with the items in data duplicated c times

● data[i] = value

– change the element at index i
● data.append(value)    O(1) *

– add value to the end of data
● data.insert(i, value)

– add value at index i
● data.pop()

– remove last value from data
● data.pop(i)

– remove item at index i from data
● data.remove(value)

– remove leftmost occurrence of value 
from data

● data1.extend(data2)

– append all items from data2 to data1
● data.reverse()     O(n)

– reverse the ordering of items in data
● data.sort()

– sort the items in data

* amortized



  

Mutating behaviors

● data[i] = value:     O(1)
– Remember, array access/modification is O(1)



  

Mutating behaviors

● data.append(value):     O(1) *
– This is the amortized cost!
– See dynamic array slides for details



  

Mutating behaviors

● data.insert(i, value):     O(n-i+1) *
– Need to shift elements right, starting at index i
– Then a single copy operation
– Use amortized argument for expanding arrays
– Inserting towards the beginning of a list is more 

expensive than inserting towards the end of a list



  

Mutating behaviors

● data.pop():     O(1) *
– No need to shift elements
– Need amortized analysis because Python lists 

shrink themselves when the capacity is no longer 
needed



  

Mutating behaviors

● data.pop(i):     O(n-i) *
– Need to shift elements left, starting at index i
– Removing from the beginning of a list is more 

expensive than removing from the end of a list
– As with pop(), need amortized analysis because the 

list may shrink



  

Mutating behaviors

● data.remove(value):     O(n) *
– Need a comparison operation for i ≤ k
– Need a copy/shift operation for i ≥ k
– No best/worst/average; it is technically Θ(n)
– Again, amortized analysis because the list shrinks



  

Mutating behaviors

● data1.extend(data2):     O(n2) *

– Need to copy every element of data2
– Need amortized argument because we'll have to 

expand data1
– More efficient than repeated appends

● Not asymptotically, but in terms of actual CPU time
● We can expand the array once, rather than repeatedly as 

we append



  

Mutating behaviors

● data.reverse():     O(n)
– Need to copy every element

● In pairs (because it's an in-place reversal)
● May actually be 1.5n copy operations



  

Mutating behaviors

● data.sort():     O(n log n)
– Naive algorithms are O(n2)

● Compare every element with O(n) other elements

– Better algorithms use divide-and-conquer
● Compare every element with O(log n) other elements

– We'll discuss this more later in the semester



  

Python Sequence Analysis
Fill in the following tables:

Operation Running 
Time

len(data) O(1)

data[i] O(1)

data.count(value) O(n)

data.index(value) O(k+1)

value in data O(k+1)

data1 == data2 O(m+1)

data[i:j] O(j-i)

data1 + data2 O(n
1
+n

2
)

c * data O(cn)

Operation Running 
Time

data[i] = value O(1)

data.append(value) O(1) *

data.insert(i, value) O(n – i + 1) *

data.pop() O(1) *

data.pop(i) O(n – i) *

data.remove(value) O(n) *

data1.extend(data2) O(n
2
) *

data.reverse() O(n)

data.sort() O(n log n)

* amortized

data, data1, and data2 are sequences with lengths of n, n
1
, and n

2
, respectively

k is the index of the leftmost occurrence; m is the leftmost index of disagreement or min(n
1
,n
2
)

Non-mutating behaviors: lists and tuples Mutating behaviors: lists only



  

Python String Analysis

Complexity 
class

Derivation

  lower(), strip(), center()

Testing/comparison

  islower(), isnumeric(), ==, <, >

Pattern matching

  str1 in str2, find(), replace(), split()

Repeated concatenation

  for ch in old_str:
      new_str += ch



  

String behaviors

● Derivation:     O(n)
– lower(), strip(), center()
– Creating a new string of length n inherently requires 

O(n) operations
● Copying n bytes requires O(n) CPU cycles
● Changing the string will cost even more operations (but 

generally still O(1) per character)



  

String behaviors

● Testing/comparison:     O(n)
– islower(), isnumeric(), ==, <, >
– Worst case: examine all characters

● Most operations can short-circuit, but the asymptotic 
behavior is still O(n)



  

String behaviors

● Pattern matching:     O(mn)
– str1 in str2, find(), replace(), split()
– Worst case: compare every character in the string to 

every element in the pattern
● m characters in the pattern
● n characters in the string

– Usually the pattern is shorter than the string
● The m could be considered a constant when the pattern is very 

short (e.g., consider searching for a single character)

– O(n+m) is possible (see section 13.2)
● This is O(n) if m is small relative to n



  

String behaviors

● Repeated concatenation:     O(n2)
–   for ch in old_str:

–       new_str += ch
– Strings are immutable in Python (and in Java)

● new_str += ch creates a new string every time!
● This requires O(n) copy operations

– O(n) operations each for the n characters in old_str 
leads to O(n2) total

– Use a temporary list or a comprehension instead



  

Python String Analysis

Complexity 
Class

Derivation

  lower(), strip(), center() O(n)

Testing/comparison

  islower(), isnumeric(), ==, <, > O(n)

Pattern matching

  str1 in str2, find(), replace(), split() O(mn)

Repeated concatenation

  for ch in old_str:
      new_str += ch

O(n2)



  

Midterm next week

● M idterm  is in-class on Wednesday
– Topics: anything covered thus far in the class 

(including today's content)
● Review session on Monday

– Come with questions!
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