

CS240
Fall 2014

Mike Lam, Professor

Analysis of Python Sequences

Python Sequence Analysis
F ill in the follow ing tables:

Operation Running
Time

len(data) O(1)

data[i] O(1)

data.count(value)

data.index(value) O(k+1)

value in data

data1 == data2

data[i:j]

data1 + data2

c * data

Operation Running
Time

data[i] = value

data.append(value) O(1) *

data.insert(i, value)

data.pop()

data.pop(i)

data.remove(value)

data1.extend(data2)

data.reverse() O(n)

data.sort()

data, data1, and data2 are sequences with lengths of n, n
1
, and n

2
, respectively

Non-mutating behaviors: lists and tuples Mutating behaviors: lists only

k is the index of the leftmost occurrence; m is the leftmost index of disagreement or min(n
1
,n
2
)

* amortized

Python Sequence Analysis
● len(data) O(1)

– return the length of data
● data[i] O(1)

– access the element at index i
● data.count(value)

– return the number of times value occurs in data
● data.index(value) O(k+1)

– return the index of the leftmost occurrence of value in data
● value in data

– return True if value is present in data
● data1 == data2

– return True if the arrays contain the same elements
● data[i:j]

– extract sublist of items from index i up to but not including j
● data1 + data2

– create new list with all items from data2 appended to data1
● c * data

– create new list with the items in data duplicated c times

● data[i] = value

– change the element at index i
● data.append(value) O(1) *

– add value to the end of data
● data.insert(i, value)

– add value at index i
● data.pop()

– remove last value from data
● data.pop(i)

– remove item at index i from data
● data.remove(value)

– remove leftmost occurrence of value
from data

● data1.extend(data2)

– append all items from data2 to data1
● data.reverse() O(n)

– reverse the ordering of items in data
● data.sort()

– sort the items in data

* amortized

Non-mutating behaviors

● len(data): O(1)
– List: we track the length of the list as it changes
– Tuple: it is set at initialization and never changed
– Both are just lookups

Non-mutating behaviors

● data[i]: O(1)
– Arrays can be indexed in O(1)

● One multiplication, one addition
● In Python, also one memory dereference

Non-mutating behaviors

● data.count(value): O(n)
– Must examine every element to see if it matches

Non-mutating behaviors

● data.index(value): O(k+1)
– k is the index of the leftmost occurrence

● k = n if value is not in data

– Must examine elements up to and including the one
we're looking for

– O(n) is also true, because n > k

Non-mutating behaviors

● value in data: O(k+1)
– Same as previous

● No less work to return a boolean than to return the index

Non-mutating behaviors

● data1 == data2: O(m+1)
– m is the leftmost index of disagreement or

min(n1,n2)

– Worst case: examine all elements from smallest
list/tuple

– However, if we find a non-matching element, we
can short-circuit

Non-mutating behaviors

● data[i:j]: O(j-i)
– Need to copy j-i elements
– No need to visit other elements
– Remember: data[i] provides O(1) access to

individual elements

Non-mutating behaviors

● data1 + data2: O(n1 + n2)

– Need to copy all elements of both lists/tuples

Non-mutating behaviors

● c * data: O(cn)
– Need to copy all elements c times

Python Sequence Analysis
Fill in the following tables:

Operation Running
Time

len(data) O(1)

data[i] O(1)

data.count(value) O(n)

data.index(value) O(k+1)

value in data O(k+1)

data1 == data2 O(m+1)

data[i:j] O(j-i)

data1 + data2 O(n
1
+n

2
)

c * data O(cn)

Operation Running
Time

data[i] = value

data.append(value) O(1) *

data.insert(i, value)

data.pop()

data.pop(i)

data.remove(value)

data1.extend(data2)

data.reverse() O(n)

data.sort()

data, data1, and data2 are sequences with lengths of n, n
1
, and n

2
, respectively

k is the index of the leftmost occurrence; m is the leftmost index of disagreement or min(n
1
,n
2
)

Non-mutating behaviors: lists and tuples Mutating behaviors: lists only

Python Sequence Analysis
● len(data) O(1)

– return the length of data
● data[i] O(1)

– access the element at index i
● data.count(value)

– return the number of times value occurs in data
● data.index(value) O(k+1)

– return the index of the leftmost occurrence of value in data
● value in data

– return True if value is present in data
● data1 == data2

– return True if the arrays contain the same elements
● data[i:j]

– extract sublist of items from index i up to but not including j
● data1 + data2

– create new list with all items from data2 appended to data1
● c * data

– create new list with the items in data duplicated c times

● data[i] = value

– change the element at index i
● data.append(value) O(1) *

– add value to the end of data
● data.insert(i, value)

– add value at index i
● data.pop()

– remove last value from data
● data.pop(i)

– remove item at index i from data
● data.remove(value)

– remove leftmost occurrence of value
from data

● data1.extend(data2)

– append all items from data2 to data1
● data.reverse() O(n)

– reverse the ordering of items in data
● data.sort()

– sort the items in data

* amortized

Mutating behaviors

● data[i] = value: O(1)
– Remember, array access/modification is O(1)

Mutating behaviors

● data.append(value): O(1) *
– This is the amortized cost!
– See dynamic array slides for details

Mutating behaviors

● data.insert(i, value): O(n-i+1) *
– Need to shift elements right, starting at index i
– Then a single copy operation
– Use amortized argument for expanding arrays
– Inserting towards the beginning of a list is more

expensive than inserting towards the end of a list

Mutating behaviors

● data.pop(): O(1) *
– No need to shift elements
– Need amortized analysis because Python lists

shrink themselves when the capacity is no longer
needed

Mutating behaviors

● data.pop(i): O(n-i) *
– Need to shift elements left, starting at index i
– Removing from the beginning of a list is more

expensive than removing from the end of a list
– As with pop(), need amortized analysis because the

list may shrink

Mutating behaviors

● data.remove(value): O(n) *
– Need a comparison operation for i ≤ k
– Need a copy/shift operation for i ≥ k
– No best/worst/average; it is technically Θ(n)
– Again, amortized analysis because the list shrinks

Mutating behaviors

● data1.extend(data2): O(n2) *

– Need to copy every element of data2
– Need amortized argument because we'll have to

expand data1
– More efficient than repeated appends

● Not asymptotically, but in terms of actual CPU time
● We can expand the array once, rather than repeatedly as

we append

Mutating behaviors

● data.reverse(): O(n)
– Need to copy every element

● In pairs (because it's an in-place reversal)
● May actually be 1.5n copy operations

Mutating behaviors

● data.sort(): O(n log n)
– Naive algorithms are O(n2)

● Compare every element with O(n) other elements

– Better algorithms use divide-and-conquer
● Compare every element with O(log n) other elements

– We'll discuss this more later in the semester

Python Sequence Analysis
Fill in the following tables:

Operation Running
Time

len(data) O(1)

data[i] O(1)

data.count(value) O(n)

data.index(value) O(k+1)

value in data O(k+1)

data1 == data2 O(m+1)

data[i:j] O(j-i)

data1 + data2 O(n
1
+n

2
)

c * data O(cn)

Operation Running
Time

data[i] = value O(1)

data.append(value) O(1) *

data.insert(i, value) O(n – i + 1) *

data.pop() O(1) *

data.pop(i) O(n – i) *

data.remove(value) O(n) *

data1.extend(data2) O(n
2
) *

data.reverse() O(n)

data.sort() O(n log n)

* amortized

data, data1, and data2 are sequences with lengths of n, n
1
, and n

2
, respectively

k is the index of the leftmost occurrence; m is the leftmost index of disagreement or min(n
1
,n
2
)

Non-mutating behaviors: lists and tuples Mutating behaviors: lists only

Python String Analysis

Complexity
class

Derivation

 lower(), strip(), center()

Testing/comparison

 islower(), isnumeric(), ==, <, >

Pattern matching

 str1 in str2, find(), replace(), split()

Repeated concatenation

 for ch in old_str:
 new_str += ch

String behaviors

● Derivation: O(n)
– lower(), strip(), center()
– Creating a new string of length n inherently requires

O(n) operations
● Copying n bytes requires O(n) CPU cycles
● Changing the string will cost even more operations (but

generally still O(1) per character)

String behaviors

● Testing/comparison: O(n)
– islower(), isnumeric(), ==, <, >
– Worst case: examine all characters

● Most operations can short-circuit, but the asymptotic
behavior is still O(n)

String behaviors

● Pattern matching: O(mn)
– str1 in str2, find(), replace(), split()
– Worst case: compare every character in the string to

every element in the pattern
● m characters in the pattern
● n characters in the string

– Usually the pattern is shorter than the string
● The m could be considered a constant when the pattern is very

short (e.g., consider searching for a single character)

– O(n+m) is possible (see section 13.2)
● This is O(n) if m is small relative to n

String behaviors

● Repeated concatenation: O(n2)
– for ch in old_str:

– new_str += ch
– Strings are immutable in Python (and in Java)

● new_str += ch creates a new string every time!
● This requires O(n) copy operations

– O(n) operations each for the n characters in old_str
leads to O(n2) total

– Use a temporary list or a comprehension instead

Python String Analysis

Complexity
Class

Derivation

 lower(), strip(), center() O(n)

Testing/comparison

 islower(), isnumeric(), ==, <, > O(n)

Pattern matching

 str1 in str2, find(), replace(), split() O(mn)

Repeated concatenation

 for ch in old_str:
 new_str += ch

O(n2)

Midterm next week

● M idterm is in-class on Wednesday
– Topics: anything covered thus far in the class

(including today's content)
● Review session on Monday

– Come with questions!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

