CS240
 Fall 2014

Mike Lam, Professor

Dynamic Arrays

Computer Memory

- Lowest level: sequence of bytes
- Each byte has a 32-bit or 64-bit address
- Every byte is equally easy to access
- "Random access" memory

Arrays

- Finite sequence of uniformly-sized segments
- Starting address, item size (in bytes), item count (fixed)
- Each location is a cell located at a zero-based index offset from the start
- Address of cell i is start+($\left.i * i t e m _s i z e\right)$
index:

Compact Arrays

- In some languages, compact byte arrays are part of the language
- Stack (C/C++)
- int my_array[n]
- Heap (C/C++)
- my_array = (int*)malloc(n*sizeof(int))
- Heap (C++/Java)
- my_array = new int[n]

Compact Arrays

- In Python, compact byte arrays of built-in type are supported by the array module
- from array import array
- my_array = array('i', [0]*n)
- However, Python lists are not compact arrays
- Referential
- Not fixed-length

Referential Array

- Array of references
- Each cell contains a 32 or 64 bit pointer to actual objects
- This is how Python implements lists

Shallow vs. Deep Copy

- Alias: new_list = original

Shallow vs. Deep Copy

- Shallow copy:new_list = list(original)

Shallow vs. Deep Copy

- Deep copynew_list = copy.deepcopy(original)

Python Lists

- How does the append operation work in Python?
- Standard arrays are fixed-length
- Python uses "dynamic arrays"

Dynamic Arrays

- Goal: Add items to an array
- Issue: Arrays are fixed-length

Dynamic Arrays

- Goal: Add items to an array
- Issue: Arrays are fixed-length
- Naive solution: Resize the array
- Problem: no guarantee that we can do this!

Dynamic Arrays

- Goal: Add items to an array
- Issue: Arrays are fixed-length
- Naive solution: Resize the array
- Problem: no guarantee that we can do this!
- More robust solution: Dynamic arrays
- Allocate more space than currently needed
- Re-allocate and copy when the original size is exceeded

Dynamic Arrays

Dynamic Arrays

new_arr:

Dynamic Arrays

Dynamic Arrays

Dynamic Arrays

Dynamic Arrays

- State information:
- n: current element count
- cap: current maximum element count
- arr. array reference
- Invariant: cap >= n

Dynamic Arrays

- How big should we initialize new arrays?
- For now let's make it big enough for a single element
- How much extra space should we allocate when we need to resize it?
- For now, let's assume we double the size

Dynamic Arrays

- See code example
- (simpler than book example)
- (uses built-in lists instead of ctypes)

Dynamic Arrays

- Big-O analysis
- Create empty array: O(1)
- Access element: O(1)
- Modify element: O(1)
- Get length: O(1)
- Append element: ???
- Let's measure cost in "copy operations"

Dynamic Arrays

- Big-O analysis
- Create empty array: O(1)
- Access element: O(1)
- Modify element: O(1)
- Get length: O(1)
- Append element:
- If cap > n: O(1)

- If cap == n: O(n)

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
cap	1	2	4	4	8	8	8	8	16	16	16	16	16	16	16	16
ops	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1

Dynamic Arrays

- Can we argue that the average cost of the append operation is $\mathrm{O}(1)$, despite its occasional $\mathrm{O}(\mathrm{n})$ cost?
- Yes! Use amortized analysis
- Basic idea: charge algorithm \$\$ to perform operations
- Overcharge for some (inexpensive) operations
- Use saved \$\$ to pay for expensive operations
- Show that the total $\$ \$$ spent is $O(n)$ for n operations
- Thus, each operation can be considered O(1)

Amortized Analysis

- Intuition: Cost of rare expensive operations grows inversely proportionally to frequency

Amortized Analysis

- Intuition: Cost of rare expensive operations grows inversely proportionally to frequency

Amortized Analysis

- Intuition: Cost of rare expensive operations grows inversely proportionally to frequency

Amortized Analysis

- Idea: Charge extra for O(1) insertions to "save up" and "pay for" the $O(n)$ insertions

Charge extra here

Amortized Analysis

- Idea: Charge extra for O(1) insertions to "save up" and "pay for" the $O(n)$ insertions

Charge extra here to pay for these

Amortized Analysis

- How much extra do we charge?
- Let's try charging 1 extra operation
- Total of 2 operations per append

Amortized Analysis

- How much extra do we charge?

Amortized Analysis

- How much extra do we charge?

Need 1; have 2; save one!

Amortized Analysis

- How much extra do we charge?

Need 2; have 2

Amortized Analysis

- How much extra do we charge?

Need 3; have 2+1=3

Amortized Analysis

- How much extra do we charge?

Need 1; have 2; save one!

Amortized Analysis

- How much extra do we charge?

Need 5; have 2+1=3

Amortized Analysis

- How much extra do we charge?

Need 1, have 2; save one each!

Amortized Analysis

- How much extra do we charge?

Need 9, have 2+3=5 \|\|

Amortized Analysis

- How much extra do we charge?

Need 17, have 2+7=9 ||

Amortized Analysis

- How much extra do we charge?
- Let's try charging 2 extra operations
- Total of 3 operations per append

Amortized Analysis

- How much extra do we charge?

Need <=3; have 3

Amortized Analysis

- How much extra do we charge?

Need 1; have 3; save two!

Amortized Analysis

- How much extra do we charge?

Need 5; have 3+2=5

Amortized Analysis

- How much extra do we charge?

Need 1, have 3; save two each!

Amortized Analysis

- How much extra do we charge?

Need 9, have 3+6=9

Amortized Analysis

- How much extra do we charge?

Need 17, have 3+14=17

Amortized Analysis

- How much extra do we charge?

Amortized Analysis

- How much extra do we charge?

Amortized Analysis

- How much extra do we charge?

Amortized Analysis

- How much extra do we charge?

Amortized Analysis

- How much extra do we charge?

Amortized Analysis

- How much extra do we charge?

Amortized Analysis

- How much extra do we charge?
- If we're doubling the size each time...
- We will need to make $2 n$ copies at the next increase
- We will have n new appends during that period
- So we need to "save up" two extra operations per cheap append to pay for the expensive appends
- Charge 3 total operations for each append

Amortized Analysis

- Total \# of operations to add n items: 3 n - Which is $O(n)$
- Average operations per append $=3 n / n=3$
- More generally: the total \# of operations is O(n so the amortized cost per append is $\mathrm{O}(1)$

Amortized Analysis

- Does the same argument apply to a constant increase when the capacity is reached?

Amortized Analysis

- Does the same argument apply to a constant increase when the capacity is reached?

Amortized Analysis

- Does the same argument apply to a constant increase when the capacity is reached?

Amortized Analysis

- Does the same argument apply to a constant increase when the capacity is reached?

Amortized Analysis

- Does the same argument apply to a constant increase when the capacity is reached?
- No! The amount of operations "saved" is always constant between increases, but the amount of work done by the capacity increases grows linearl) with the size of the array.
- This actually leads $₫\left(n^{2}\right)$ total operations for n appends, instead of $\mathrm{O}(\mathrm{n})$ total operations

Amortized Analysis

- Does the same argument apply to a tripling increase when the capacity is reached?

Amortized Analysis

- Does the same argument apply to a tripling increase when the capacity is reached?

Amortized Analysis

- Does the same argument apply to a tripling increase when the capacity is reached?

Amortized Analysis

- Does the same argument apply to a tripling increase when the capacity is reached?
- Yes! Charge three extra operations instead of two, and then we will have saved roughly 3n operations before the next capacity increase.
- Total operations for n appends: $4 n \in O(n)$
- The amortized cost for each append is still $\mathrm{O}(1)$
- In fact, the argument works for any geometric progression

Amortized Analysis

- Python lists don't use strict geometric progression
- But the average cost is still $O(1)$
- See Section 5.3.3 for evidence

Amortized Analysis

- Overcharge for cheap operations to "save up" credit for expensive operations
- If the total cost for operations can be shown to be $O(n)$, then the average cost for each individual operation is $\mathrm{O}(1)$

Next Time

- Complexity classes for common operations on Python lists and strings

