CS240 Fall 2014

Mike Lam, Professor

Algorithm Analysis Exercises

• Fill in the appropriate Big-O relation:

10n E (5n) $\log n \in (2n)$ $n^2 + n \in (10n)$ $5n \log n \epsilon$ (10n) $5n \log n \in (n^2)$ $n^2 \log n \in (n^2 + n \log n)$ $2^{n} \in (n^{2})$

• Fill in the appropriate Big-O relation:

 $10n \in \Theta(5n)$ $\log n \in O(2n)$ $n^{2} + n \in \Omega$ (10n) 5n log n $\in \Omega$ (10n) 5n log n \in O (n²) $n^2 \log n \in \Omega (n^2 + n \log n)$ $2^n \in \Omega(n^2)$

• Using either definition of Big-O, demonstrate: $10n \in \Theta(5n)$

• Using either definition of Big-O, demonstrate: $10n \in \Theta(5n)$

10n є O(5n)

10n є Ω(5n)

Show that c and n_0 exist such that: 10n \leq c.5n for all n>n_0 Show that c and n_0 exist such that: $10n \ge c.5n$ for all $n>n_0$

• Using either definition of Big-O, demonstrate: $10n \in \Theta(5n)$

10n є O(5n)

10n ε Ω(**5n**)

Show that c and n_0 exist such that: 10n \leq c.5n for all n>n_0

$$n_0 = 1, c = 2$$

Show that c and n_0 exist such that: $10n \ge c.5n$ for all $n>n_0$

n₀ = 1, c = 2

• Using either definition of Big-O, demonstrate: $10n \in \Theta(5n)$

Alternately, show that $\lim_{n \to \infty} \frac{10 n}{5 n}$ is a constant

greater than 0 and less than infinity.

• Using either definition of Big-O, demonstrate: $10n \in \Theta(5n)$

Alternately, show that $\lim_{n \to \infty} \frac{10 n}{5 n}$ is a constant

greater than 0 and less than infinity.

$$\lim_{n \to \infty} \frac{10 n}{5 n} = \lim_{n \to \infty} 2 = 2$$


```
def example1(values):
sum = 0
for i in values:
    sum += i
for i in range(20):
    sum += i
return sum
```



```
def example1(values):
sum = 0
for i in values:
    sum += i
for i in range(20):
    sum += i
return sum
```

Additions: 20 + n Complexity: O(n)


```
def example2(values):
sum = 0
for i in values:
    sum += i
    for j in range(20):
        sum += j
return sum
```



```
def example2(values):
sum = 0
for i in values:
    sum += i
    for j in range(20):
        sum += j
        Additions: 21n
        Complexity: O(n)
return sum
```



```
def example3(values):
sum = 0
for i in values:
    sum += i
    for j in values:
        sum += j
    return sum
```



```
def example3(values):
sum = 0
for i in values:
    sum += i
    for j in values:
        sum += j
return sum
```

Additions: n²+n Complexity: O(n²)

 Given these two algorithms, for what values of n is Algorithm A faster?

Algorithm A

Algorithm B

Additions: n²+n Complexity: O(n²)

Additions: 21n Complexity: O(n)

 Given these two algorithms, for what values of *n* is Algorithm A faster?

Algorithm A

Algorithm B

Additions: n²+n Complexity: O(n²)

Additions: 21n Complexity: O(n)

 Given these two algorithms, for what values of n is Algorithm A faster?

Algorithm A

Algorithm B

Additions: n²+n Complexity: O(n²)

Additions: 21n Complexity: O(n)

Preferred for x<20

Preferred for x>20

```
def example4(values):
sum = 0
for i in range (1000):
    sum = sum + i
for num in values:
    indx = 1
    while indx <= len(values)
        sum += values[indx-1]
        indx *= 2
return sum</pre>
```



```
def example4(values):
sum = 0
for i in range (1000):
    sum = sum + i
    Co
for num in values:
    indx = 1
    while indx <= len(values)
        sum += values[indx-1]
        indx *= 2
return sum</pre>
```

Additions: 1000 + n log₂ n Complexity: O(n log n)

 Given these two algorithms, for what values of n is Algorithm A faster?

Algorithm A

Algorithm B

Additions: 49n² + 50n

Additions: n³

 Using either definition of BBg-demonstrate that 2n + 2n ∈ Θ(n³)