CS240
 Fall 2014

Mike Lam, Professor

Algorithm Analysis Exercises

Exercises

- Fill in the appropriate Big-O relation:

$$
\begin{gathered}
10 n \epsilon_{\ldots}(5 n) \\
\log n \epsilon _(2 n) \\
n^{2}+n \epsilon _(10 n) \\
5 n \log n \epsilon _(10 n) \\
5 n \log n \epsilon _\left(n^{2}\right) \\
n^{2} \log n \epsilon_{\ldots}\left(n^{2}+n \log n\right) \\
2^{n} \epsilon_{\ldots}\left(n^{2}\right)
\end{gathered}
$$

Exercises

- Fill in the appropriate Big-O relation:

$$
\begin{gathered}
10 n \in \Theta(5 n) \\
\log n \in O(2 n) \\
n^{2}+n \in \Omega(10 n) \\
5 n \log n \in \Omega(10 n) \\
5 n \log n \in O\left(n^{2}\right) \\
n^{2} \log n \in \Omega\left(n^{2}+n \log n\right) \\
2^{n} \in \Omega\left(n^{2}\right)
\end{gathered}
$$

Exercises

- Using either definition of Big-O, demonstrate:

$$
10 n \in \Theta(5 n)
$$

Exercises

- Using either definition of Big-O, demonstrate:

$10 n \in \Theta(5 n)$

$10 n \in O(5 n)$

Show that c and n_{0} exist such that:
$10 n \leq c \cdot 5 n$ for all $n>n_{0}$
$10 n \in \Omega(5 n)$
Show that c and n_{0} exist such that:
$10 n \geq c \cdot 5 n$ for all $n>n_{0}$

Exercises

- Using either definition of Big-O, demonstrate:

$10 n \in \Theta(5 n)$

$10 n \in O(5 n)$

Show that c and n_{0} exist such that:
$10 n \leq c \cdot 5 n$ for all $n>n_{0}$

$$
\mathrm{n}_{0}=1, \mathrm{c}=2
$$

$10 n \in \Omega(5 n)$
Show that c and n_{0} exist such that:
$10 n \geq c \cdot 5 n$ for all $n>n_{0}$

$$
\mathrm{n}_{0}=1, \mathrm{c}=2
$$

Exercises

- Using either definition of Big-O, demonstrate: $10 n \in \Theta(5 n)$

Alternately, show that $\lim _{n \rightarrow \infty} \frac{10 n}{5 n}$ is a constant greater than 0 and less than infinity.

Exercises

- Using either definition of Big-O, demonstrate: $10 n \in \Theta(5 n)$

Alternately, show that $\lim _{n \rightarrow \infty} \frac{10 n}{5 n}$ is a constant greater than 0 and less than infinity.

$$
\lim _{n \rightarrow \infty} \frac{10 n}{5 n}=\lim _{n \rightarrow \infty} 2=2
$$

Exercises

- Determine the number of addition operations performed by this function as well as its complexity class.

```
def example1(values):
    sum = 0
    for i in values:
        sum += i
    for i in range(20):
    sum += i
    return sum
```


Exercises

- Determine the number of addition operations performed by this function as well as its complexity class.

```
def example1(values):
    sum = 0
    for i in values:
        sum += i
    for i in range(20):
        sum += i
return sum
```

Additions: 20 + n
Complexity: O(n)

Exercises

- Determine the number of addition operations performed by this function as well as its complexity class.

```
def example2(values):
    sum = 0
    for i in values:
    sum += i
    for j in range(20):
    sum += j
```

 return sum

Exercises

- Determine the number of addition operations performed by this function as well as its complexity class.

```
def example2(values):
    sum = 0
    for i in values:
    sum += i
    for j in range(20): Additions:21n
        sum += j
    Complexity: O(n)
```

 return sum

Exercises

- Determine the number of addition operations performed by this function as well as its complexity class.

```
def example3(values):
    sum = 0
    for i in values:
    sum += i
    for j in values:
        sum += j
    return sum
```


Exercises

- Determine the number of addition operations performed by this function as well as its complexity class.

```
def example3(values):
    sum \(=0\)
    for i in values:
    sum += i
    for \(j\) in values:
        sum += j
        Additions: \(\mathrm{n}^{2}+\mathrm{n}\)
        Complexity: \(\mathrm{O}\left(\mathrm{n}^{2}\right)\)
    return sum
```


Exercises

- Given these two algorithms, for what values of n is Algorithm A faster?

Algorithm A
Additions: $\mathbf{n}^{2}+\mathbf{n}$
Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Algorithm B

Additions: 21n
Complexity: O(n)

Exercises

- Given these two algorithms, for what values of n is Algorithm A faster?

Algorithm A
Additions: $\mathbf{n}^{2}+\mathbf{n}$
Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Algorithm B

Additions: 21n
Complexity: O(n)

Exercises

- Given these two algorithms, for what values of n is Algorithm A faster?

Algorithm A
Additions: $\mathbf{n}^{2}+\mathbf{n}$
Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Algorithm B
Additions: 21n
Complexity: O(n)

Preferred
for $\mathbf{x}<20$

Preferred for $\mathrm{x}>20$

Exercises

- Determine the number of addition operations performed by this function as well as its complexity class.

```
def example4(values):
    sum = 0
    for i in range (1000):
        sum = sum + i
    for num in values:
        indx = 1
        while indx <= len(values)
        sum += values[indx-1]
        indx *= 2
    return sum
```


Exercises

- Determine the number of addition operations performed by this function as well as its complexity class.

```
def example4(values):
    sum = 0
    for i in range (1000):
        sum = sum + i
    for num in values:
        indx = 1
        while indx <= len(values)
        sum += values[indx-1]
        indx *= 2
    return sum
```

 Additions: \(1000+n \log _{2} \mathbf{n}\)
 Complexity: O(n \(\log n)\)

Exercises

- Given these two algorithms, for what values of n is Algorithm A faster?

Algorithm A
Additions: $49 \mathbf{n}^{\mathbf{2}}+\mathbf{5 0 n}$

Algorithm B
Additions: \mathbf{n}^{3}

Exercises

- Using either definition of Bey-demonstrate that 2 甲 $+2 n \in \Theta\left(n^{3}\right)$

